
Quickstep: A Data Platform Based on the Scaling-Up
Approach∗

Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti,
Zuyu Zhang, Marc Spehlmann, Hakan Memisoglu, Saket Saurabh

Computer Sciences Department
University of Wisconsin – Madison

{jignesh, harshad, jianqiao, nav, zuyu, spehlmann, memisoglu, ssaurabh}@cs.wisc.edu

ABSTRACT
Modern servers pack enough storage and computing power that just
a decade ago was spread across a modest-sized cluster. This pa-
per presents a prototype system, called Quickstep, to exploit the
large amount of parallelism that is packed inside modern servers.
Quickstep builds on a vast body of previous methods for organiz-
ing data, optimizing, scheduling and executing queries, and brings
them together in a single system. Quickstep also includes new
query processing methods that go beyond previous approaches. To
keep the project focused, the project’s initial target is read-mostly
in-memory data warehousing workloads in single-node settings. In
this paper, we describe the design and implementation of Quickstep
for this target application space. We also present experimental re-
sults comparing the performance of Quickstep to a number of other
systems, demonstrating that Quickstep is often faster than many
other contemporary systems, and in some cases faster by orders-of-
magnitude. Quickstep is an Apache (incubating) project.

PVLDB Reference Format:
Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu

Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quick-
step: A Data Platform Based on the Scaling-Up Approach. PVLDB, 11 (6):
xxxx-yyyy, 2018.
DOI: https://doi.org/10.14778/3184470.3184471

1. INTRODUCTION
Query processing systems today face a host of challenges that

were not as prominent just a few years ago. A key change has
been dramatic changes in the hardware landscape that is driven by
the need to consider energy as a first-class (hardware) design pa-
rameter. Across the entire processor-IO hierarchy, the hardware
paradigm today looks very different than it did just a few years ago.
Consequently, we are now experiencing a growing deficit between
the pace of hardware performance improvements and the pace that
is demanded of data processing kernels to keep up with the growth
in data volumes.

∗The Quickstep project code lives in the Apache repository at:
https://github.com/apache/incubator-quickstep.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 6
Copyright 2018 VLDB Endowment 2150-8097/18/02.
DOI: https://doi.org/10.14778/3184470.3184471

2011 2012 2013 2014 2015 2016 2017

Year

1.0

1.5

2.0

2.5

3.0

G
ro

w
th

 r
e
la

ti
v
e
 t

o
 2

0
1
1 CINT2006 # cores/chip # pages

Figure 1: Processor performance improvement as measured
by the highest reported CINT2006 benchmark result for Intel
Xeon chips from [60] compared to the number of pages indexed
by Google (using estimates made by [61]). The figure does not
show the increase in the number of queries (which is about 2.5X
for Google search queries from 2011–14), and the increase in
the complexity of queries as applications request richer ana-
lytics. These aspects make the deficit problem worse. The fig-
ure also shows the maximum number of cores per chip used
in reported CINT2006 results over time. Interestingly (and
not shown in the figure), both the minimum and the average
amount of memory per chip in the reported CINT2006 results
has grown by ≈4X from 2011 to 2017.

Figure 1 illustrates this deficit issue by comparing improvements
in processor performance (blue line) with the growth rate of data
(green line), using the number of pages indexed by Google as an il-
lustrative example. This data growth rate is conservative for many
organizations, which tend to see a far higher rate of increase in
the data volume; for example, Facebook’s warehouse grew by 3X
in 2014 [46]. This figure also shows (using a dotted orange line
with squares) the growth in the number of cores per processor over
time. As one can observe, the number of cores per processor is
rising rapidly. In addition, since 2011 the main memory sizes are
also growing rapidly, and there is an increasing shift to larger main
memory configurations. Thus, there is a critical need for in-memory
data processing methods that scale-up to exploit the full (parallel)
processing power that is locked in commodity multi-core servers
today. Quickstep targets this need, and in this paper we describe
the initial version of Quickstep that targets single-node in-memory
read-mostly analytic workloads.

To pay off the deficit, Quickstep uses mechanisms that allow for
high intra-operator parallelism. Such mechanisms are critical to
exploit the full potential of the high level of hardware compute par-
allelism that is present in modern servers (the dotted orange line
in Figure 1). Unlike most research database management systems
(DBMSs), Quickstep has a storage manager with a block layout,



Basic+RS CCS Selection LIP Final

Optimization technique

0
1
2
3
4
5
6

Ti
m

e
in

se
co

nd
s

Figure 2: A waterfall chart showing the impact of various
techniques in Quickstep for query 10 from the TPC-H bench-
mark running on a 100 scale factor database. RS (Row Store),
and CCS (Compressed Column Store) are both supported in
Quickstep (see Section 3.1). Basic and Selection are template
metaprogramming optimizations (described in Section 3.3),
which relate to the efficiency of predicate and expression evalu-
ation. LIP (Lookahead Information Passing, described in Sec-
tion 5.3) is a technique to improve join performance. Starting
with a configuration (Basic + RS), each technique is introduced
one at a time to show the individual impact of each technique
on this query.

where each block behaves like a mini self-contained database [13].
This “independent” block-based storage design is leveraged by a
highly parallelizable query execution paradigm in which indepen-
dent work orders are generated at the block level. Query execution
then amounts to creating and scheduling work orders, which can be
done in a generic way. Thus, the scheduler is a crucial system com-
ponent, and the Quickstep scheduler cleanly separates scheduling
policies from the underlying scheduling mechanisms. This sepa-
ration allows the system to elastically scale the resources that are
allocated to queries, and to adjust the resource allocations dynami-
cally to meet various policy-related goals.

Recognizing that random memory access patterns and material-
ization costs often dominate the execution time in main-memory
DBMSs, Quickstep uses a number of query processing techniques
that take the “drop early, drop fast” approach: eliminating redun-
dant rows as early as possible, as fast as possible. For instance,
Quickstep aggressively pushes down complex disjunctive predi-
cates involving multiple tables using a predicate over-approximation
scheme. Quickstep also uses cache-efficient filter data structures to
pass information across primary key-foreign key equijoins, elimi-
nating semi-joins entirely in some cases.

Overall, the key contributions of this paper are as follows:
Cohesive collection of techniques: We present the first end-to-end
design for Quickstep. This system brings together in a single arti-
fact a number of mechanisms for in-memory query processing such
as support for multiple storage formats, a template metaprogram-
ming approach to both manage the software complexity associated
with supporting multiple storage formats and to evaluate expres-
sions on data in each storage format efficiently, and novel query
optimization techniques. The impact of each mechanism depends
on the workload, and our system brings these mechanisms together
as a whole. For example, the waterfall chart in Figure 2 shows the
contributions of various techniques on the performance of TPC-H
Query 10.

Novel query processing techniques: We present Quickstep’s
use of techniques to aggressively push down complex disjunctive
predicates involving multiple relations, as well as to eliminate cer-
tain types of equijoins using exact filters.

Manageability: The design of the system focuses on ease-of-
use, paying attention to a number of issues, including employing
methods such as using a holistic approach to memory management,
and elastically scaling query resource usage at runtime to gracefully
deal with concurrent queries with varying query priorities.

Comparison with other systems: We also conduct an end-to-
end evaluation comparing Quickstep with a number of other sys-
tems. These system are: Spark [4, 67], PostgreSQL [49], Mon-
etDB [27], and VectorWise [71]. Our results show that in many
cases, Quickstep is faster by an order-of-magnitude, or more.

We also leverage the multiple different storage implementations
in Quickstep to better understand the end-to-end impact of the pop-
ular row store and column store methods on the SSB and TPC-H
queries. To the best of our knowkedge, an apples-to-apples com-
parison of these benchmark queries does not exist. We show that
overall column stores are still preferred, though the speed up over-
all is only about 2X. Earlier comparisions, e.g. [2], have been indi-
rect comparisons of this aspect of storage management for the SSB
benchmark across two different systems, and show far larger (6X)
improvements.

Open source: Quickstep is available as open-source, which we
hope helps the reproducability goal that is being pursued in our
community [11, 36, 37]. It also allows other researchers to use this
system as a platform when working on problems where the impact
of specific techniques can be best studied within the context of the
overall system behavior.

The remainder of this paper is organized as follows: The overall
Quickstep architecture is presented in the next section. The stor-
age manager in presented in Section 3. The query execution and
scheduling methods are presented in Sections 4 and 5 respectively.
Empirical results are presented in Section 6, and related work is
presented in Section 7. Finally, Section 8 contains our concluding
remarks.

2. QUICKSTEP ARCHITECTURE
Quickstep implements a collection of relational algebraic oper-

ators, using efficient algorithms for each operation. This “kernel”
can be used to run a variety of applications, including SQL-based
data analytics (the focus of this paper) and other classes of analyt-
ics/machine learning (using the approach outlined in [18,68]). This
paper focuses only on SQL analytics.

2.1 Query Language and Data Model
Quickstep uses a relational data model, and SQL as its query lan-

guage. Currently, the system supports the following types: INTEGER
(32-bit signed), BIGINT/LONG (64-bit signed), REAL/FLOAT (IEEE
754 binary32), DOUBLE PRECISION (IEEE 754 binary64), fixed-
point DECIMAL, fixed-length CHAR strings, variable-length VARCHAR
strings, DATETIME/TIMESTAMP (with microsecond resolution),
date-time INTERVAL, and year-month INTERVAL.

2.2 System Overview
The internal architecture of Quickstep resembles the architecture

of a typical DBMS engine. A distinguishing aspect is that Quick-
step has a query scheduler (cf. Section 4.2), which plays a key
first-class role allowing for quick reaction to changing workload
management (see evaluation in Section 6.9). A SQL parser con-
verts the input query into a syntax tree, which is then transformed
by an optimizer into a physical plan. The optimizer uses a rules-
based approach [21] to transform the logical plan into an optimal
physical plan. The current optimizer supports projection and selec-
tion push-down, and both bushy and left-deep trees.



A catalog manager stores the logical and physical schema infor-
mation, and associated statistics, including table cardinalities, the
number of distinct values for each attribute, and the minimum and
maximum values for numerical attributes.

A storage manager organizes the data into large multi-MB blocks,
and is described in Section 3.

An execution plan in Quickstep is a directed acyclic graph (DAG)
of relational operators. The execution plan is created by the opti-
mizer, and then sent to the scheduler. The scheduler is described in
Section 4.

A relational operator library contains implementation of various
relational operators. Currently, the system has implementations for
the following operators: select, project, joins (equijoin, semijoin,
antijoin and outerjoin), aggregate, sort, and top-k.

Quickstep implements a hash join algorithm in which the two
phases, the build phase and the probe phase, are implemented as
separate operators. The build hash table operator reads blocks of
the build relation, and builds a single cache-efficient hash table in
memory using the join predicate as the key (using the method pro-
posed in [7]). The probe hash table operator reads blocks of the
probe relation, probes the hash table, and materializes joined tuples
into in-memory blocks. Both the build and probe operators take ad-
vantage of block-level parallelism, and use a latch-free concurrent
hash table to allow multiple workers to proceed at the same time.

For non-equijoins, a block-nested loops join algorithm is used.
The hash join method has also been adapted to support left outer
join, left semijoin, and antijoin operations.

For aggregation without GROUP BY, local aggregates for each
input block are computed, which are then merged to compute the
global aggregate. For aggregation with GROUP BY, a global latch-
free hash table of aggregation handles is built (in parallel), using
the grouping columns as the key.

The sort and top-K operators use a two-phase algorithm. In the
first phase, each block of the input relation is sorted in-place, or
copied to a single temporary sorted block. These sorted blocks are
merged in the second (final) phase.

3. STORAGE MANAGER
The Quickstep storage manager [13] is based on a block-based

architecture, which we describe next. The storage manager allows
a variety of physical data organizations to coexist within the same
database, and even within the same table. We briefly outline the
block-based storage next.

3.1 Block-Structured Storage
Storage for a particular table in Quickstep is divided into many

blocks with possibly different layouts, with individual tuples wholly
contained in a single block. Blocks of different sizes are supported,
and the default block size is 2 megabytes. On systems that support
large virtual-memory pages, Quickstep constrains block sizes to be
an exact multiple of the hardware large-page size (e.g. 2 megabytes
on x86-64) so that it can allocate buffer pool memory using large
pages and make more efficient use of processor TLB entries.

Internally, a block consists of a small metadata header (the block’s
self-description), a single tuple-storage sub-block and any number
of index sub-blocks, all packed in the block’s contiguous mem-
ory space. There are multiple implementations of both types of
sub-blocks, and the API for sub-blocks is generic and extensible,
making it easy to add more sub-block types in the future. Both
row-stores and column-store formats are supported, and orthogo-
nally these stores can be compressed. See [24] for additional details
about the block layouts.

3.2 Compression
Both row store and column store tuple-storage sub-blocks may

optionally be used with compression. Quickstep supports two type-
specific order-preserving compression schemes: (1) simple ordered
dictionary compression for all data types, and (2) leading zeroes
truncation for numeric data types. In addition, Quickstep automat-
ically chooses the most efficient compression for each attribute on
a per-block basis.

Dictionary compression converts native column values into short
integer codes that compare in the same order as the original val-
ues. Depending on the cardinality of values in a particular column
within a particular block, such codes may require considerably less
storage space than the original values. In a row store, compressed
attributes require only 1, 2, or 4 bytes in a single tuple slot. In
a column store, an entire column stripe consists only of tightly-
packed compressed codes. We note that in the column-store case,
we could more aggressively pack codes without “rounding up” to
the nearest byte, but our experiments have indicated that the more
complicated process of reconstructing codes that span across mul-
tiple words slows down scans overall when this technique is used.
Thus, we currently pack codes at 1, 2, and 4 byte boundaries.

3.3 Template Metaprogramming
As noted above, Quickstep supports a variety of data layouts

(row vs. column store, and with and without compression). Each
operator algorithm (e.g. scan, select, hash-based aggregate, hash-
based join, nested loops join) must work with each data layout.
From a software development perspective, the complexity of the
software development for each point in this design space can be
quite high. A naive way to manage this complexity is to use inher-
itance and dynamic dispatch. However, the run-time overhead of
such indirection can have disastrous impact on query performance.

To address this problem, Quickstep uses a template metapro-
gramming approach to allow efficient access to data in the blocks.
This approach is inspired by the principle of zero-cost abstractions
exemplified by the design of the C++ standard template library
(STL), in which the implementations of containers (such as vectors
and maps) and algorithms (like find and sort) are separated from
each other.

Quickstep has an analogous design wherein access to data in a
sub-block is made via a ValueAccessor in combination with a
generic functor (usually a short lambda function) that implements
the evaluation of some expression or the execution of some op-
erator algorithm. The various ValueAccessors and functors have
been designed so that the compiler can easily inline calls and (stat-
ically) generate compact and efficient inner loops for expression
and operator evaluation described in more detail below in Sec-
tion 3.3.1. Such loops are also amenable to prefetching and SIMD
auto-vectorization by the compiler, and potentially (in the future)
mappable to data parallel constructs in new hardware. (We ac-
knowledge that there is a complementary role for run-time code
generation.) We describe the use of this technique for expression
evaluation next.

3.3.1 Expression Evaluation
The ValueAccessors (VAs) play a crucial role in efficient

evaluation of expressions (e.g. discount*price). Figure 3 il-
lustrates how VAs work using as example an expression that is the
product of two attributes. There are various compile time optimiza-
tions that control the code that is generated for VAs. When using
the “Basic” optimization, the VA code makes a physical copy of
the attributes that are referenced in the expression. These are steps



Data 
Block

All the columns 
for a block of 

tuple, including 
the attributes 
discount and

price and stored 
here in some 

storage format)
V

al
ue

A
cc

es
so

r
(d

is
co

un
t)

V
al

ue
A

cc
es

so
r

(p
ri

ce
)

V
al

ue
A

cc
es

so
r

(d
is

co
un

t*
pr

ic
e)

1 2

3 4

Figure 3: Evaluation of the expression discount*price.

1 and 2 in Figure 3. The vector of the two attributes are then multi-
plied (step 3 in the figure) using a loop unrolled by the compiler
(possibly generating SIMD instructions). The output of the ex-
pression is another VA object, from which (efficient) copies can be
made to the final destination (likely a sub-block in a result block).

When using the “Selection” optimization level, the code that is
generated for the VAs uses an indirection to the attributes (regard-
less of the storage format in the block). Thus, in steps 1 and 2
in Figure 3, the resulting VA “vectors” contain pointers to the ac-
tual attributes. These pointers are dereferenced as needed in step
3. With the Selection optimization, copies are avoided, and if the
columns are in a columnar store format the VAs are further com-
pacted to simply point to the start of the “vector” in the actual stor-
age block.

To understand the impact of the template metaprogramming ap-
proach we compared the code generated by the template metaprogam-
ming (i.e. VA) approach with a standalone program that uses dy-
namic dispatch to access the attributes. With the dynamic dispatch
option, a traditional getNext() interface is used to access the
attributes in a uniform way regardless of the underlying storage
format. For this comparison, we created a table with two inte-
ger attributes, set the table cardinality to 100 million tuples, and
stored the data in a columnar store format. Then, we evaluated
an expression that added both the integer attributes (on the same 2
socket system described in Section 6). The resulting code using the
Selection optimization is 3X faster compared to the virtual func-
tion approach when using a single thread (when the computation is
compute-bound), and drops to 2X when using all the (20) hardware
threads when the computation is more memory-bound.

3.4 Holistic Memory Management
The Quickstep storage manager maintains a buffer pool of mem-

ory that is used to create blocks, and to load them from persistent
storage on-demand. Large allocations of unstructured memory are
also made from this buffer pool, and are used for shared run-time
data structures like hash tables for joins and aggregation operations.
These large allocations for run-time data structures are called blobs.
The buffer pool is organized as a collection of slots, and the slots in
the buffer pool (either blocks or blobs) are treated like a larger-sized
version of page slots in a conventional DBMS buffer pool.

We note that in Quickstep all memory for caching base data, tem-
porary tables, and run-time data structures is allocated and man-

aged by the buffer pool manager. This holistic view of memory
management implies that the user does not have to worry about how
to partition memory for these different components. The buffer
pool employs an eviction policy to determine the pages to cache in
memory. Quickstep has a mechanism where different “pluggable”
eviction policies can be activated to choose how and when blocks
are evicted from memory, and (if necessary) written back to per-
sistent storage if the page is “dirty.” The default eviction policy is
LRU-2 [42].

Data from the storage manager can be persisted through a file
manager abstraction that currently supports the Linux file system
(default), and also HDFS [59].

4. SCHEDULING & EXECUTION
In this section, we describe how the design of the query pro-

cessing engine in Quickstep achieves three key objectives. First,
we believe that separating the control flow and the data flow in-
volved in query processing allows for greater flexibility in reacting
to runtime conditions and facilitates maintainability and extensibil-
ity of the system. To achieve this objective, the engine separates
responsibilities between a scheduler, which makes work schedul-
ing decisions, and workers that execute the data processing kernels
(cf. Section 4.1).

Second, to fully utilize the high degree of parallelism offered by
modern processors, Quickstep complements its block-based stor-
age design with a work order-based scheduling model (cf. Sec-
tion 4.2) to obtain high intra-query and intra-operator parallelism.

Finally, to support diverse scheduling policies for sharing re-
sources (such as CPU and memory) between concurrent queries,
the scheduler design separates the choice of policies from the exe-
cution mechanisms (cf. Section 4.3).

4.1 Threading Model
The Quickstep execution engine consists of a single scheduler

thread and a pool of workers. The scheduler thread uses the query
plan to generate and schedule work for the workers. When multiple
queries are concurrently executing in the system, the scheduler is
responsible for enforcing resource allocation policies across con-
current queries and controlling query admittance under high load.
Furthermore, the scheduler monitors query execution progress, en-
abling status reports as illustrated in Section 6.10.

The workers are responsible for executing the relational opera-
tion tasks that are scheduled. Each worker is a single thread that
is pinned to a CPU core (possibly a virtual core), and there are
as many workers as cores available to Quickstep. The workers
are created when the Quickstep process starts, and are kept alive
across query executions, minimizing query initialization costs. The
workers are stateless; thus, the worker pool can elastically grow or
shrink dynamically.

4.2 Work Order-based Scheduler
The Quickstep scheduler divides the work for the entire query

into a series of work orders. In this section, we first describe the
work order abstraction and provide a few example work order types.
Next, we explain how the scheduler generates work orders for dif-
ferent relational operators in a query plan, including handling of
pipelining and internal memory management during query execu-
tion.

The optimizer sends to the scheduler an execution query plan
represented as a directed acyclic graph (DAG) in which each node
is a relational operator. Figure 4 shows the DAG for the example
query shown below. Note that the edges in the DAG are annotated



Product Buys 

Build	  
Hash	  

σ	   σ	  

ϒ	  

Probe	  
Hash	  

Drop	  Hash	  
Table	  

Print	  

Drop	  ϒ	  
	  Table	  

Query Result  

Drop	  σ	  
Outputs	  

Drop	  Join	  
Output	  

Pipeline breaking 
Non-pipeline breaking 

Figure 4: Plan DAG for the sample query

with whether the producer operator is blocking or permits pipelin-
ing.

SELECT SUM(sales)
FROM Product P NATURAL JOIN Buys B
WHERE B.buy_month = 'March'
AND P.category = 'swim'

4.2.1 Work Order
A work order is a unit of intra-operator parallelism for a rela-

tional operator. Each relational operator in Quickstep describes its
work in the form of a set of work orders, which contains references
to its inputs and all its parameters. For example, a selection work
order contains a reference to its input relation, a filtering predi-
cate, and a projection list of attributes (or expressions) as well as
a reference to a particular input block. A selection operator gener-
ates as many work orders as there are blocks in the input relation.
Similarly, a build hash work order contains a reference to its input
relation, the build key attribute, a hash table reference, and a refer-
ence to a single block of the input build relation to insert into the
hash table.

4.2.2 Work Order Generation and Execution
The scheduler employs a simple DAG traversal algorithm to ac-

tivate nodes in the DAG. An active node in the DAG can generate
schedulable work orders, which can be fetched by the scheduler.
In the example query, initially, only the Select operators (shown
in Figure 4 using the symbol σ) are active. Operators such as
the probe hash and the aggregation operations are initially inactive
as their blocking dependencies have not finished execution. The
scheduler begins executing this query by fetching work orders for
the select operators. Later, other operators will become active as
their dependencies are met, and the scheduler will fetch work or-
ders from them.

The scheduler assigns these work orders to available workers,
which then execute them. All output is written to temporary storage

blocks. After executing a work order, the worker sends a comple-
tion message to the scheduler, which includes execution statistics
that can be used to analyze the query execution behavior.

4.2.3 Implementation of Pipelining
In our example DAG (Figure 4), the edge from the Probe hash

operator to the Aggregate operator allows for data pipelining. As
described earlier, the output of each probe hash work order is writ-
ten in some temporary blocks. Fully-filled output blocks of probe
hash operators can be streamed to the aggregation operator (shown
using the symbol γ in the figure). The aggregation operator can
generate one work order for each streamed input block that it re-
ceives from the probe operator, thereby achieving pipelining.

The design of the Quickstep scheduler separates control flow
from data flow. The control flow decisions are encapsulated in the
work order scheduling policy. This policy can be tuned to achieve
different objectives, such as aiming for high performance, staying
with a certain level of concurrency/CPU resource consumption for
a query, etc. In the current implementation, the scheduler eagerly
schedules work orders as soon as they are available.

4.2.4 Output Management
During query execution, intermediate results are written to tem-

porary blocks. To minimize internal fragmentation and amortize
block allocation overhead, workers reuse blocks belonging to the
same output relation until they become full. To avoid memory pres-
sure, these intermediate relations are dropped as soon as they have
been completely consumed (see the Drop σ Outputs operator in the
DAG). Hash tables are also freed similarly (see the Drop Hash Ta-
ble operator). An interesting avenue for future work is to explore
whether delaying these Drop operators can allow sub-query reuse
across queries.

4.3 Separation of Policy and Mechanism
Quickstep’s scheduler supports concurrent query execution. Re-

call that a query is decomposed into several work orders during ex-
ecution. These work orders are organized in a data structure called
the Work Order Container. The scheduler maintains one such con-
tainer per query. A single scheduling decision involves: selection of
a query→ selection of a work order from the container→ dispatch-
ing the work order to a worker thread. When concurrent queries are
present, a key aspect of the scheduling decision is to select a query
from the set of active concurrent queries, which we describe next.

The selection of a query is driven by a high level policy. An ex-
ample of such a policy is Fair. With this policy, in a given time
interval, all active queries get an equal proportion of the total CPU
cycles across all the cores. Another such policy is Highest Prior-
ity First (HPF), which gives preference to higher priority queries.
(The HPF policy is illustrated later in Section 6.9.) Thus, Quick-
step’s scheduler consists of a component called the Policy Enforcer
that transforms the policy specifications in each of the scheduling
decisions.

The Policy Enforcer uses a probabilistic framework for selecting
queries for scheduling decisions. It assigns each query a probability
value, which indicates the likelihood of that query being selected in
the next scheduling decision. We employ a probabilistic approach
because it is attractive from an implementation and debugging per-
spective (as we only worry about the probability values, which can
be adjusted dynamically at anytime, including mid-way through
query execution).

The probabilistic framework forms the mechanism to realize the
high level policies and remains decoupled from the policies. This



design is inspired from the classical separation of policies from
mechanism principle [31].

A key challenge in implementing the Policy Enforcer lies in
transforming the policy specifications to probability values, one for
each query. A critical piece of information used to determine the
probability values is the prediction of the execution time of the fu-
ture work order for a query. This information provides the Policy
Enforcer some insight into the future resource requirements of the
queries in the system. The Policy Enforcer is aware of the current
resource allocation to different queries in the system, and using
these predictions, it can adjust the future resource allocation with
the goal of enforcing the specified policy for resource sharing.

The predictions about execution time of future work orders of a
query are provided by a component called the Learning Agent. It
uses a prediction model that takes execution statistics of the past
work orders of a query as input and estimates the execution time
for the future work orders for the query.

The calculation of the probability values for different policies
implemented in Quickstep and their relation with the estimated
work order execution time is presented in [17].

To prevent the system from thrashing (e.g. out of memory), a
load controller is in-built into the scheduler. During concurrent ex-
ecution of the queries, the load controller can control the admission
of queries into the system and it may suspend resource intensive
queries, to ensure resource availability.

Finally, we note that by simply tracking the work orders that are
completed, Quickstep can provide a built-in generic query progress
monitor (shown in Section 6.10).

5. EFFICIENT QUERY PROCESSING
Quickstep builds on a number of existing query processing meth-

ods (as described in Section 2.2). The system also improves on ex-
isting methods for specific common query processing patterns. We
describe these query processing methods in this section.

Below, we first describe a technique that pushes down certain
disjunctive predicates more aggressively than is common in tra-
ditional query processing engines. Next, we describe how certain
joins can be transformed into cache-efficient semi-joins using exact
filters. Finally, we describe a technique called LIP that uses Bloom
filters to speed up the execution of join trees with a star schema
pattern.

The unifying theme that underlies these query processing meth-
ods is to eliminate redundant computation and materialization us-
ing a “drop early, drop fast” approach: aggressively pushing down
filters in a query plan to drop redundant rows as early as possible,
and using efficient mechanisms to pass and apply such filters to
drop them as fast as possible.

5.1 Partial Predicate Push-down
While query optimizers regularly push conjunctive (AND) predi-

cates down to selections, it is difficult to do so for complex, multi-
table predicates involving disjunctions (OR). Quickstep addresses
this issue by using an optimization rule that pushes down partial
predicates that conservatively approximate the result of the origi-
nal predicate.

Consider a complex disjunctive multi-relation predicate P in the
form P = (p1,1∧· · ·∧p1,m1)∨· · ·∨ (pn,1∧· · ·∧pn,mn), where
each term pi,j may itself be a complex predicate but depends only
on a single relation. While P itself cannot be pushed down to any
of the referenced relations (say R), we show how an appropriate
relaxation of P , P ′(R), can indeed be pushed down and applied at
a relation R.

This predicate approximation technique derives from the insight
that if any of the terms pi,j in P does not depend onR, it is possible
to relax it by replacing it with the tautological predicate > (i.e.,
TRUE). Clearly, this technique is only useful if R appears in every
conjunctive clause in P , since otherwise P relaxes and simplifies to
the trivial predicate >. So let us assume without loss of generality
that R appears in the first term of every clause, i.e., in each pi,1 for
i = 1, 2, . . . , n. After relaxation, P then simplifies to P ′(R) =
p1,1 ∨ p1,2 ∨ . . . ∨ p1,n, which only references the relation R.

The predicate P ′ can now be pushed down to R, which often
leads to significantly fewer redundant tuples flowing through the
rest of the plan. However, since the exact predicate must later be
evaluated again, such a partial push down is only useful if the pred-
icate is selective. Quickstep uses a rule-based approach to decide
when to push down predicates, but in the future we plan to expand
this method to consider a cost-based approach based on estimated
cardinalities and selectivities instead.

There is a discussion of join-dependent expression filter push-
down technique in [10], but the overall algorithm for generaliza-
tion, and associated details, are not presented. The partial predicate
push-down can be considered a generalization of such techniques.

Note that the partial predicate push down technique is compli-
mentary to implied predicates used in SQL Server [38] and Ora-
cle [44]. Implied predicates use statistics from the catalog to add
additional filter conditions to the original predicate. Our technique
does not add any new predicates, instead it replaces the predicates
from another table to TRUE.

5.2 Exact Filters: Join to Semi-join Transfor-
mation

A new query processing approach that we introduce in this pa-
per (which, to the best of our knowledge, has not been described
before) is to identify opportunities when a join can be transformed
to a semi-join, and to then use a fast, cache-efficient semi-join im-
plementation using a succinct bitvector data structure to evaluate
the join(s) efficiently. This bitvector data structure is called an Ex-
act Filter (EF), and we describe it in more detail below.

To illustrate this technique, consider the SSB [43] query Q4.1
(see Figure 5a). Notice that in this query the part table does
not contribute any attributes to the join result with lineorder,
and the primary key constraint guarantees that the part table does
not contain duplicates of the join key. Thus, we can transform
the lineorder – part join into a semi-join, as shown in Fig-
ure 5b. During query execution, after the selection predicate is
applied on the part table, we insert each resulting value in the
join key (p partkey) into an exact filter. This filter is imple-
mented as a bitvector, with one bit for each potential p partkey
in the part table. The size of this bitvector is known during query
compilation based on the min-max statistics present in the catalog.
(These statistics in the catalog are kept updated for permanent ta-
bles even if the data is modified.) The EF is then probed using
the lineorder table. The lineorder – supplier join also
benefits from this optimization.

The implementation of semi-join operation using EF rather than
hash tables improves performance for many reasons. First, by turn-
ing insertions and probes into fast bit operations, it eliminates the
costs of hashing keys and chasing collision chains in a hash table.
Second, since the filter is far more succinct than a hash table, it
improves the cache hit ratio. Finally, the predictable size of the fil-
ter eliminates costly hash table resize operations that occur when
selectivity estimates are poor.

The same optimization rule also transforms anti-joins into semi-
anti-joins, which are implemented similarly using EFs.



⋈
lineorder σ(supplier)

⋈ σ(customer)

σ(part)

date

𝛾

⋈
⋈

(a) Original query plan

⋉
lineorder σ(supplier)

⋉ σ(customer)

σ(part)

date

𝛾

⋈
⋈

(b) Plan using join to semi-join transformation

⋈
lineorder σ(supplier)

⋈ σ(customer)

σ(part)

date

𝛾

⋈
⋈

LIP filters

(c) Query plan using LIP (only)

Figure 5: Query plan variations for SSB Query 4.1

5.3 Lookahead Information Passing (LIP)
Quickstep also employs a join processing technique called LIP

that combines the “drop early” and “drop fast” principles underly-
ing the techniques we described above. We only briefly discuss this
technique here, and refer the reader to related work [70] for more
details.

Consider SSB Query 4.1 from Figure 5a again. The running time
for this query plan is dominated by the cost of processing the tree
of joins. We observe that a lineorder row may pass the joins
with supplier and part, only to be dropped by the join with
customer. Even if we assume that the joins are performed in
the optimal order, the original query plan performs redundant hash
table probes and materializations for this row. The essence of the
LIP technique is to look ahead in the query plan and drop such rows
early. In order to do so efficiently, we use LIP filters, typically an
appropriately-configured Bloom filter [8].

The LIP technique is based on semi-join processing and side-
ways information passing [5,6,28], but is applied more aggressively
and optimized for left-deep hash join trees in the main-memory
context. For each join in the join tree, during the hash-table build
phase, we insert the build-side join keys into an LIP filter. Then,
these filters are all passed to the probe-side table, as shown in Fig-
ure 5c. During the probe phase of the hash join, the probe-side join
keys are looked up in all the LIP filters prior to probing the hash ta-
bles. Due to the succinct nature of the Bloom filters, this LIP filter
probe phase is more efficient than hash table probes, while allow-
ing us to drop most of the redundant rows early, effectively pushing
down all build-side predicates to the probe-side table scan.

During query optimization, Quickstep first pushes down predi-
cates (including partial push-down described above) and transforms
joins to semi-joins. The LIP technique is then used to speed up the
remaining joins. Note that our implementation of LIP generalizes
beyond the discussion here to also push down filters across other
types of joins, as well as aggregations. In addition to its perfor-
mance benefits, LIP also provably improves robustness to join or-
der selection through the use of an adaptive technique, as discussed
in detail in [70].

6. EVALUATION
In this section, we present results from an empirical evaluation

comparing Quickstep with other systems. We note that perfor-
mance evaluation is always a tricky proposition as there are a large
number of potential systems to compare with. Our goal here is
to compare with popular systems that allow running end-to-end

queries for TPC-H and SSB benchmarks, and pick three popu-
lar representative systems that each have different approaches to
high performance analytics, and support stand-alone/single node
in-memory query execution. We note that a large number of differ-
ent SQL data platforms have been built over the past four decades,
and a comparison of all systems in this ecosystem is beyond the
scope of this paper.

The three open-source systems that we use are MonetDB [27],
PostgreSQL [49] and Spark [4, 67] and the commercial system is
VectorWise [71]. We note that there is a lack of open-source in-
memory systems that focus on high-performance on a single node
(the focus of this paper). VectorWise and Hyper [30] are newer
systems, and though informal claims for them easily outperforming
MonetDB can often be heard at conferences, that aspect has never
been cataloged before. We hope that using both VectorWise and
MonetDB in our study fills part of this gap. We would have liked to
try Hyper, as both VectorWise and Hyper represent systems in this
space that were designed over the last decade; but as readers may
be aware, Hyper is no longer available for evaluation.

Next, we outline our reasons for choosing these systems. Mon-
etDB, is an early column-store database engine that has seen over
two decades of development. We also compare with VectorWise,
which is a commercial column store system with origins in Mon-
etDB. PostgreSQL is representative of a traditional relational data
platform that has had decades to mature, and is also the basis for
popular MPP databases like CitusDB [14], GreenPlum [23], and
Redshift [55]. We use PostgreSQL v. 9.6.2, which includes about a
decade’s worth of work by the community to add intra-query par-
allelism [50]. We chose Spark as it is an increasingly popular in-
memory data platform. Thus, it is instructive just for comparison
purposes, to consider the relative performance of Quickstep with
Spark. We use Spark 2.1.0, which includes the recent improve-
ments for vectorized evaluation [56].

6.1 Workload
For the evaluation, we use the TPC-H benchmark at scale factor

100 as well as the Star Schema Benchmark (SSB) at scale factors 50
and 100. Both these benchmarks illustrate workloads for decision
support systems.

For the results presented below, we ran each query 5 times in
succession in the same session. Thus, the first run of the query
fetches the required input data into memory, and the subsequent
runs are “hot.” We collect these five execution times and report the
average of the middle three execution times.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

TPC-H Query

0.1 0.1

1 1

10 10

100 100

1000 1000
Ti

m
e

(s
ec

on
ds

),
lo

g
sc

al
e PostgreSQL Spark MonetDB VectorWise Quickstep

Figure 6: Comparison with TPC-H, scale factor 100. Q17 and Q20 did not finish on PostgreSQL after an hour.

6.2 System Configuration
For the experiments presented below, we use a server that is

provisioned as a dedicated “bare-metal” box in a larger cloud in-
frastructure [57]. The server has two Intel Xeon E5-2660 v3 2.60
GHz (Haswell EP) processors. Each processor has 10 cores and
20 hyper-threading hardware threads. The machine runs Ubuntu
14.04.1 LTS. The server has a total of 160GB ECC memory, with
80GB of directly-attached memory per NUMA node. Each proces-
sor has a 25MB L3 cache, which is shared across all the cores on
that processor. Each core has a 32KB L1 instruction cache, 32KB
L1 data cache, and a 256KB L2 cache.

6.3 System Tuning
Tuning systems for optimal performance is a cumbersome task,

and much of the task of tuning is automated in Quickstep. When
Quickstep starts, it automatically senses the available memory and
grabs about 80% of the memory for its buffer pool. This buffer
pool is used for both caching the database and also for creating
temporary data structures such as hash tables for joins and ag-
gregates. Quickstep also automatically determines the maximum
available hardware parallelism, and uses that to automatically de-
termine and set the right degree of intra-operator and intra-query
parallelism. As noted in Section 3.1, Quickstep allows both row-
store and column-store formats. These are currently specified by
the users when creating the tables, and we find that for optimal per-
formance, in most cases, the fact tables should be stored in (com-
pressed) column store format, and the dimension tables in row-store
formats. We use this hybrid storage format for the databases in the
experiments below.

MonetDB too aims to work without performance knobs. Mon-
etDB however does not have a buffer pool, so some care has to be
taken to not run with a database that pushes the edge of the memory
limit. MonetDB also has a read-only mode for higher performance,
and after the database was loaded, we switched to this mode.

The other systems require some tuning to achieve good perfor-
mance, as we discuss below.

For VectorWise, we increased the buffer pool size to match the
size of the memory on the machine (VectorWise has a default set-
ting of 40 GB). We also set the number of cores and the maximum
parallelism level flags to match the number of cores with hyper-
threading turned on.

PostgreSQL was tuned to set the degree of parallelism to match
the number of hyper-threaded cores in the system. In addition, the
shared buffer space was increased to allow the system to cache the
entire database in memory. The temporary buffer space was set to
about half the shared buffer space. This combination produced the
best performance for PostgreSQL.

Spark was configured in standalone mode and queries were is-
sued using Spark-SQL from a Scala program. We set the number of

partitions (spark.sql.shuffle.partitions) to the num-
ber of hyperthreaded cores. We experimented with various settings
for the number of workers and partitions, and used the best combi-
nation. This combination was often when the number of workers
was a small number like 2 or 4 and the number of partitions was set
to the number of hyper-threaded cores.

Unlike the other systems, Spark sometimes picks execution plans
that are quite expensive. For example, for the most complex queries
in the SSB benchmark (the Q4.X queries), Spark choses a Cartesian
product. As a result, these queries crashed the process when it ran
out of memory. We rewrote the FROM clause in these queries to
enforce a better join order. We report results from these rewritten
queries below.

6.4 TPC-H at Scale Factor 100
Figure 6 shows the results for all systems when using the TPC-H

dataset at SF 100 (~100GB dataset).
As can be seen in Figure 6, Quickstep far outperforms MonetDB,

PostgreSQL and Spark across all the queries, and in many cases by
an order-of-magnitude (the y-axis is on a log scale). These gains
are due to three key aspects of the design of the Quickstep sys-
tem: the storage and scheduling model that maximally utilize avail-
able hardware parallelism, the template metaprogramming frame-
work that ensures that individual operator kernels run efficiently
on the underlying hardware, and the query processing and opti-
mization techniques that eliminate redundant work using cache-
efficient data structures. Comparing the total execution time across
all the queries in the benchmark, both Quickstep and VectorWise
are about 2X faster than MonetDB and orders-of-magnitude faster
than Spark and PostgreSQL.

When comparing Quickstep and VectorWise, the total run times
for the two systems (across all the queries) is 46s and 70s respec-
tively, making Quickstep ∼34% faster than VectorWise. Across
each query, there are queries where each system outperforms the
other. Given the closed-source nature of VectorWise, we can only
speculate about possible reasons for performance differences.

VectorWise is significantly faster (at least 50% speedup) in 3 of
the 22 queries. The most common reason for Quickstep’s slow-
down is the large cost incurred in materializing intermediate results
in queries with deep join trees, particularly query 7. While the use
of partial push-down greatly reduced this materialization cost al-
ready (by about 6X in query 7, for instance), such queries produce
large intermediate results. Quickstep currently does not have an im-
plementation for late materialization of columns in join results [58],
which hurts its performance. Quickstep also lacks a fast imple-
mentation for joins when the join condition contains non-equality
predicates (resulting in 4X slowdown in query 17), as well as for
aggregation hash tables with composite, variable-length keys (such
as query 10).



1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

SSB query

0.01 0.01

0.1 0.1

1 1

10 10

100 100
Ti

m
e

(s
ec

on
ds

),
lo

g
sc

al
e PostgreSQL Spark MonetDB VectorWise Quickstep

Figure 7: Comparison with denormalized SSB, scale factor 50.

On the other hand, Quickstep significantly outperforms Vector-
Wise (at least 50% speedup) in 10 of the 22 queries. Across the
board, the use of LIP and exact filters improves Quickstep’s per-
formance by about 2X. In particular, Quickstep’s 4X speedup over
VectorWise in query 5 can be attributed to LIP (due to its deep join
trees with highly selective predicates on build-side). Similarly, we
attribute a speedup of 4.5X in query 11 to exact filters, since ev-
ery one of the four hash joins in a naive query plan is eliminated
using this technique. The combination of these features also ex-
plains about 2X speedups in queries 3 and 11. We also see a 4.5X
speedup for query 6, which we have not been able to explain given
that we only have access to the VectorWise binaries. Query 19 is
3X faster in Quickstep. This query benefits significantly from the
partial predicate push-down technique (cf. Section 5.1). Vector-
Wise appears to also do predicate pushdown [10], but its approach
may not be as general as our approach.

For the remaining 9 queries, Quickstep and VectorWise have
comparable running times.

We have also carried out similar experiments using the SSB bench-
mark; these results are reported in [47].

As noted above (cf. Section 6.3), Quickstep uses a hybrid database
format with the fact table is stored in compressed column store for-
mat and the dimension tables in a row store format. For the TPC-H
SF 100 dataset, we ran an experiment using a pure row store and
pure compressed column store format for the entire database. The
hybrid combination was 40% faster than the pure compressed col-
umn store case, and 3X faster than the pure row store case, illustrat-
ing the benefit of using a hybrid storage combination. We note that
these results show smaller improvements for column stores over
row stores compared to earlier comparisions, e.g. [2]; although this
previous work has used indirect comparisons using the SSB bench-
mark and across two different systems.

6.5 Denormalizing for higher performance
In this experiment, we consider a technique that is sometimes

used to speed up read-mostly data warehouses. The technique is
denormalization, and data warehousing software product manu-
als often recommend considering this technique for read-mostly
databases (e.g. [26, 39, 63]).

For this experiment, we use a specific schema-based denormal-
ization technique that has been previously proposed [35]. This
technique walks through the schema graph of the database, and
converts all foreign-key primary-key “links” into an outer-join ex-
pression (to preserve NULL semantics). The resulting “flattened”
table is called a WideTable, and it is essentially a denormalized
view of the entire database. The columns in this WideTable are
stored as column stores, and complex queries then become scans
on this table.

An advantage of the WideTable-based denormalization is that it

is largely agnostic to the workload characteristics (it is a schema-
based transformation). Thus, it is easier to use in practice than
selected materialized view methods.

We note that every denormalization technique has the drawback
of making updates and data loading more expensive. For example,
loading the denormalized WideTable in Quickstep takes about 10X
longer than loading the corresponding normalized database. Thus,
this method is well-suited for very low update and/or append only
environments.

For this experiment, we used the SSB dataset at scale factor 50.
The raw denormalized dataset file is 128GB.

The results for this experiment are shown in Figure 7. The to-
tal time to run all thirteen queries is 1.6s, 3.2s, 23.2s, 1,014s, and
111.9s across Quickstep, VectorWise, MonetDB, PostgreSQL and
Spark respectively. Quickstep’s advantage over MonetDB now in-
creases to over an order-of-magnitude (14X) across most queries.
MonetDB struggles with the WideTable that has 58 attributes. Mon-
etDB uses a BAT file format, in which it stores the pair (attribute
and object-id) for each column. In contrast, Quickstep’s block-
based storage design does not have the overhead of storing the
object-id/tuple-id for each attribute (and for each tuple). The disk
footprint of the database file is only 42 GB for Quickstep while it
is 99 GB for MonetDB. Tables with such large schemas hurt Mon-
etDB, while Quickstep’s storage design allows it to easily deal with
such schemas. Since queries now do not require joins (they become
scans on the WideTable), Quickstep sees a significant increase in
performance. Quickstep is also about 2X faster than VectorWise,
likely because of similar reasons as that for MonetDB. To the best
of our knowledge, the internal details about VectorWise’s imple-
mentation have not been described publicly, but they likely inherit
aspects of MonetDB’s design, since the database disk footprint is
63 GB.

Quickstep’s speedup over the other systems also continues when
working with tables with a large number of attributes. Compared to
Spark and PostgreSQL, Quickstep is 70X and 640X faster. Notice
that compared to the other systems, PostgreSQL has only a pure
row-store implementation, which hurts it significantly when work-
ing with tables with a large number of attributes.

6.6 Impact of Row Store vs. Column Store
As described in Section 3, Quickstep supports both row store

and column store formats. In this experiment, we use the multiple
storage format feature in Quickstep to study the impact of different
storage layouts, and specifically we compare a row-store versus a
column-store layout. A notable example of such comparison is the
work by Abadi et al. [2], in which the SSB benchmark was used to
study this aspect, but across two different systems – one that was a
row-store system and the other was a column-store (C-store) [62].
In this experiment, we also use the SSB benchmark, but we use a



 0

 1

 2

 3

 4

Overall

S
p
e
e
d
u
p
 o

v
e
r

 r
o
w

 s
to

re

(a) Overall speedup

 0

 1

 2

 3

 4

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

S
p
e
e
d
u
p
 o

v
e
r

 r
o
w

 s
to

re
(b) Detailed query speedups

Figure 8: Impact of storage format on performance for SSB scale factor 100

 0

 1

 2

Total

S
p
e
e
d
u
p
 o

v
e
r 

’B
a
s
ic

’

(a) Change in total time.

 0

 1

 2

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

S
p
e
e
d
u
p
 o

v
e
r 

’B
a
s
ic

’

(b) Change in the detailed query execution times.

Figure 9: Impact of template metaprogramming.

100 scale factor dataset (instead of the 10 scale factor database that
was used in [2]).

In Figure 8, we show the speedup of the (default) column store
compared to the row store format.

The use of a column store format leads, unsurprisingly, to higher
performance over using a row store format. The simpler Q1.Y
queries show far bigger improvements as the input table scan is
a bigger proportion of the query execution time. The other queries
spend a larger fraction of their time on joins, and passing tuples
between the join operations. Consequently, switching to a column
store has a less dramatic improvement in performance for these
queries.

An interesting note is that the impact of column stores here is
smaller than previous comparisons [2] which have compared these
approaches across two different systems and showed about a 6X
improvement for column-stores. Overall, we see a 2X improvement
for column-stores, which is lower than these previous results.

We have also experimented with compressed column-stores in
this same setting, and find that they are slower than non-compressed
column stores. Compressed column stores are still faster than row
store by about 50% overall. But compression adds run-time CPU
overhead which reduces is overall performance compared to regu-
lar column stores. (In the interest of space we do not present the
detailed results.)

The results for TPC-H are similar, and omitted in the interest of
space.

6.7 Template Metaprogramming Impact
Next, we toggle the use of the template metaprogramming (see

Section 3.3.1), using the SSB 100 scale factor dataset. Specifi-
cally, we change the compile time flag that determines whether the
ValueAccessor is constructed by copying attributes (Basic) or

by providing an indirection (Selection). The results for this experi-
ment are shown in Figure 9.

The overall performance impact of eliminating the copy during
predicate evaluation is about 20%. As with the previous experi-
ment, the benefits are larger for the simpler Q1.X queries and lower
for the other queries that tend to spend most of their time on join
operations and in the pipelines in passing tuples between different
join operations.

The result for this experiment with TPC-H show far smaller im-
provements (see Figure 2 for a typical example), as the TPC-H
queries spend a far smaller fraction on their overall time on ex-
pression evaluation (compared to the SSB queries).

6.8 Impact of Optimization Techniques
We described the novel optimization techniques in Quickstep op-

timizer in Section 5. In this experiment, we measure the impact of
these techniques individually, viz. LIP and join to semi-join trans-
formation.

As with the previous two sections, we use the SSB 100 scale
factor dataset. (The results for the TPC-H dataset is similar.) Fig-
ure 10 shows the impact of these techniques over a baseline in
which neither of these techniques are used. As shown in Figure 10,
these techniques together provide a nearly 2X speedup for the entire
benchmark. The LIP and semi-join transformation techniques indi-
vidually provide about 50% and 20% speedup respectively. While
some queries do see a slowdown due to the individual techniques,
the application of both techniques together always gives some speedup.
In fact, of the 13 queries in the benchmark, 8 queries see at least a
50% speedup and three queries see at least 2X speedup. The largest
speedups are in the most complex queries (group 4), where we see
an overall speedup of more than 3X.



 0

 1

 2

 3

 4

 5

Overall

S
p
e
e
d
u
p

(a) Overall speedup

 0

 1

 2

 3

 4

 5

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

S
p
e
e
d
u
p

Both techniques

LIP only

Join to semi-join transformation only

(b) Breakdown of speedup due to techniques

Figure 10: Impact of Exact Filter and LIP using SSB at scale factor 100.

0.0 5.0 10.0 15.0 20.0

Time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
PU

U
til

iz
at

io
n

Q4.3 (2)
Q4.2 (2)
Q4.1 (1)
Q3.4 (1)
Q3.3 (1)
Q3.2 (1)
Q3.1 (1)
Q2.3 (1)
Q2.2 (1)
Q2.1 (1)
Q1.3 (1)
Q1.2 (1)
Q1.1 (1)

Figure 11: Prioritized query execution. QX.Y(1) indicates that Query X.Y has a priority 1. Q4.2 and Q4.3 have higher priority (2)
than the other queries (1).

These results validate the usefulness of these techniques on typi-
cal workloads. Further, their simplicity of implementation and gen-
eral applicability leads us to believe that these techniques should be
more widely used in other database systems.

6.9 Elasticity
In this experiment, we evaluate Quickstep’s ability to quickly

change the degree of inter-query parallelism, driven by the design
of its work-order based scheduling approach (cf. Section 4.2). For
this experiment, we use the 100 scale factor SSB dataset. The ex-
periment starts by concurrently issuing the first 11 queries from the
SSB benchmark (i.e. Q1.1 to Q4.1), against an instance of Quick-
step that has just been spun up (i.e. it has an empty/cold database
buffer pool). All these queries are tagged with equal priority, so
the Quickstep scheduler aims to provide an equal share of the re-
sources to each of these queries. While the concurrent execution of
these 11 queries is in progress, two high priority queries enter the
system at two different time points. The results for this experiment
are shown in Figure 11. In this figure, the y-axis shows the fraction
of CPU resources that are used by each query, which is measured
as the fraction of the overall CPU cycles utilized by the query.

Notice in Figure 11, at around the 5 second mark when the high
priority query Q4.2 arrives, the Quickstep scheduler quickly stops
scheduling work orders from the lower priority queries and allo-
cates all the CPU resources to the high-priority query Q4.2. As
the execution of Q4.2 completes, other queries simply resume their
execution.

Another high priority query (Q4.3) enters the system at around
15 seconds. Once again, the scheduler dedicates all the CPU re-
sources to Q4.3 and pauses the lower priority queries. At around 17

seconds, as the execution of query Q4.3 completes, the scheduler
resumes the scheduling of work orders from all remaining active
lower priority queries.

This experiment highlights two important features of the Quick-
step scheduler. First, it can dynamically and quickly adapt its schedul-
ing strategies. Second, the Quickstep scheduler can naturally sup-
port query suspension (without requiring complex operator code
such as [15]), which is an important concern for managing re-
sources in actual deployments.

6.10 Built-in Query Progress Monitoring
An interesting aspect of using a work-order based scheduler (de-

scribed in Section 4.2) is that the state of the scheduler can easily be
used to monitor the status of a query, without requiring any changes
to the operator code. Thus, there is a generic in-built mechanism to
monitor the progress of queries.

Quickstep can output the progress of the query as viewed by the
scheduler, and this information can be visualized. As an example,
Figure 12 shows the progress of a query with three join operations,
one aggregation, and one sort operation.

7. RELATED WORK
We have noted related work throughout the presentation of this

paper, and we highlight some of the key areas of overlapping re-
search here.

There is tremendous interest in the area of main-memory databases
and a number of systems have been developed, including [3, 4, 9,
19,30,32,45,53,66,71], While similar in motivation, our work em-
ploys a unique block-based architecture for storage and query pro-
cessing, as well as fast query processing techniques for in-memory



[0] SelectOperator
Input stored relation [supplier]

Span: [0ms, 38ms] (6.15%)
Effective concurrency: 6.89

Completed

[1] BuildHashOperator
Span: [45ms, 80ms] (5.61%)
Effective concurrency: 1.12

Completed

[6] HashJoinOperator
probe side stored relation [lineorder]

Span: [111ms, 620ms] (81.96%)
Effective concurrency: 37.92

In progress

[7] HashJoinOperator
Not started

[2] SelectOperator
Input stored relation [customer]

Span: [0ms, 88ms] (14.32%)
Effective concurrency: 27.55

Completed

[3] BuildHashOperator
Span: [89ms, 96ms] (1.27%)
Effective concurrency: 10.58

Completed

[8] HashJoinOperator
Not started

[4] SelectOperator
Input stored relation [ddate]
Span: [78ms, 83ms] (0.87%)
Effective concurrency: 1.00

Completed

[5] BuildHashOperator
Span: [84ms, 84ms] (0.06%)
Effective concurrency: 1.00

Completed

[9] AggregationOperator
Not started

[10] FinalizeAggregationOperator
Not started

[11] DestroyAggregationStateOperator
Not started

[12] SortRunGenerationOperator
Not started

[13] SortMergeRunOperator
Not started

Figure 12: Query progress status. Green nodes (0-5) indicate work
that is completed, the yellow node (6) corresponds to operators whose
work-orders are currently being executed, and the blue nodes (7-13)
show the work that has yet to be started.

processing. The combination of these techniques not only leads
to high performance, but also gives rise to interesting properties in
this end-to-end system, such as elasticity (as shown in Section 6.9).

Our vectorized execution on blocks has similarity to the work on
columnar execution methods, including recent proposals such as [1,
20,29,34,51,54,64,65,69]. Quickstep’s template metaprogramming-
based approach relies on compiler optimizations to make automatic
use of SIMD instructions. Our method is complementary to run-
time code generation (such as [1, 4, 20, 25, 29, 40, 41, 48, 51, 54,
64, 65, 69]). Our template metaprogramming-based approach uses
static (compile-time) generation of the appropriate code for pro-
cessing tuples in each block. This approach eliminates the per-
query run-time code generation cost, which can be expensive for
short-running queries. An interesting direction for future work is
to consider combining these two approaches.

The design of Quickstep’s storage blocks has similarities to the
tablets in Google’s BigTable [12]. However, tablets’ primary pur-
pose is to serve sorted key-value store applications whereas Quick-
step’s storage blocks adhere to a relational data model allowing
for optimization such as efficient expression evaluation (cf. Sec-
tion 3.3).

Our use of a block-based storage design naturally leads to a
block-based scheduling method for query processing, and this con-
nection has been made by Chasseur et al. [13] and Leis et al. [33].
In this work, we build on these ideas. We also leverage these ideas
to allow for desirable properties, such as dynamic elastic behavior
(cf. Section 6.9).

Philosophically, the block-based scheduling that we use is simi-
lar to the MapReduce style query execution [16]. A key difference
between the two approaches is that there is no notion of pipelining
in the original MapReduce framework, however Quickstep allows
for pipelined parallelism. Further, in Quickstep common data struc-
tures (e.g. an aggregate hash table) can be shared across different
tasks that belong to the same operator.

The exact filters build on the rich history of semi-join optimiza-
tion dating back at least to Bernstein and Chiu [6]. The LIP tech-
nique presented in Section 5.3 also draws on similar ideas, and is
described in greater detail in [70].

Achieving robustness in query processing is a goal for many
database systems [22]. Quickstep uses the LIP technique to achieve
robust performance for star-schema queries. We formally define the
notion of robustness and prove the robustness guarantees provided
by Quickstep. VectorWise uses micro-adaptivity technique [52] for
robustness, but their focus is largely on simpler scan operations.

Overall, we articulate the growing need for the scaling-up ap-
proach, and present the design of Quickstep that is designed for a
very high-level of intra-operator parallelism to address this need.
We also present a set of related query processing and optimization
methods. Collectively our methods achieve high performance on
modern multi-core multi-socket machines for in-memory settings.

8. CONCLUSIONS & FUTURE WORK
Compute and memory densities inside individual servers contin-

ues to grow at an astonishing pace. Thus, there is a clear need
to complement the emphasis on “scaling-out” with an approach
to “scaling-up” to exploit the full potential of parallelism that is
packed inside individual servers.

This paper has presented the design and implementation of Quick-
step that emphasizes a scaling-up approach. Quickstep currently
targets in-memory analytic workloads that run on servers with mul-
tiple processors, each with multiple cores. Quickstep uses a novel
independent block-based storage organization, a task-based method
for executing queries, a template metaprogramming mechanism to
generate efficient code statically at compile-time, and optimiza-
tions for predicate push-down and join processing. We also present
end-to-end evaluations comparing the performance of Quickstep
and a number of other contemporary systems. Our results show that
Quickstep delivers high performance, and in some cases is faster
than some of the existing systems by over an order-of-magnitude.

Aiming for higher performance is a never-ending goal, and there
are a number of additional opportunities to achieve even higher
performance in Quickstep. Some of these opportunities include
operator sharing, fusing operators in a pipeline, improvements in
individual operator algorithms, dynamic code generation, and ex-
ploring the use of adaptive indexing/storage techniques. We plan
on exploring these issues as part of future work. We also plan on
building a distributed version of Quickstep.

9. ACKNOWLEDGMENTS
This work was supported in part by the National Science Foun-

dation under grants IIS-0963993, IIS-1110948, and IIS-1250886,
and by gift donations from Google, Huawei and Pivotal. A project
like Quickstep would not have been possible without the support
and contributions from many people over the years. In this re-
gard, we would especially like to thank Shoban Chandrabose, Craig
Chasseur, Julian Hyde, Rogers Jeffrey Leo John, Yinan Li, Adal-
bert Gerald Soosai Raj, Vaishnavi Sashikanth, Rathijit Sen, Gavin
Sherry, Shivakumar Venkataraman and Qiang Zeng.



10. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database
systems. In SIGMOD, pages 671–682, 2006.

[2] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs.
row-stores: how different are they really? In SIGMOD, pages
967–980, 2008.

[3] L. Abraham, J. Allen, O. Barykin, V. R. Borkar, B. Chopra,
C. Gerea, D. Merl, J. Metzler, D. Reiss, S. Subramanian,
J. L. Wiener, and O. Zed. Scuba: Diving into data at
facebook. PVLDB, 6(11):1057–1067, 2013.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: relational data processing in spark.
In SIGMOD, pages 1383–1394, 2015.

[5] C. Beeri and R. Ramakrishnan. On the power of magic. In
PODS, pages 269–284, 1987.

[6] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to
solve relational queries. J. ACM, 28(1):25–40, Jan. 1981.

[7] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of
main memory hash join algorithms for multi-core cpus. In
SIGMOD, pages 37–48, 2011.

[8] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. CACM, 13:422–426, 1970.

[9] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the
memory wall in MonetDB. Commun. ACM, 51(12):77–85,
2008.

[10] P. A. Boncz, T. Neumann, and O. Erling. TPC-H analyzed:
Hidden messages and lessons learned from an influential
benchmark. In 5th TPC Technology Conference, TPCTC,
pages 61–76, 2013.

[11] P. Bonnet, S. Manegold, M. Bjørling, W. Cao, J. Gonzalez,
J. A. Granados, N. Hall, S. Idreos, M. Ivanova, R. Johnson,
D. Koop, T. Kraska, R. Müller, D. Olteanu, P. Papotti,
C. Reilly, D. Tsirogiannis, C. Yu, J. Freire, and D. E. Shasha.
Repeatability and workability evaluation of SIGMOD 2011.
SIGMOD Record, 40(2):45–48, 2011.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber.
Bigtable: A distributed storage system for structured data.
OSDI, pages 205–218, 2006.

[13] C. Chasseur and J. M. Patel. Design and evaluation of
storage organizations for read-optimized main memory
databases. PVLDB, 6(13):1474–1485, 2013.

[14] Citus Data. https://www.citusdata.com, 2016.
[15] D. L. Davison and G. Graefe. Memory-contention responsive

hash joins. In VLDB, 1994.
[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. OSDI, pages 10–10, 2004.
[17] H. Deshmukh, H. Memisoglu, and J. M. Patel. Adaptive

concurrent query execution framework for an analytical
in-memory database system. IEEE BigData Congress, 2017.

[18] J. Fan, A. G. S. Raj, and J. M. Patel. The case against
specialized graph analytics engines. In CIDR, 2015.

[19] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,
and J. Dees. The SAP HANA database – an architecture
overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[20] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice: Pushing the
envelop of main memory data processing with a new storage
layout. In SIGMOD, pages 31–46, 2015.

[21] G. Graefe. Encapsulation of parallelism in the volcano query
processing system. In SIGMOD, pages 102–111, 1990.

[22] G. Graefe, A. C. König, H. A. Kuno, V. Markl, and K.-U.
Sattler. 10381 Summary and Abstracts Collection – Robust
Query Processing. Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2011.

[23] Greenplum database. http://greenplum.org, 2016.
[24] Harshad Deshmukh. Storage Formats in Quickstep.

http://quickstep.incubator.apache.org/guides/

2017/03/30/storage-formats-quickstep.html,
2017.

[25] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton.
Architecture of a database system. Foundations and Trends
in Databases, 1(2):141–259, 2007.

[26] IBM Corp. Database design with denormalization.
http://ibm.co/2eKWmW1.

[27] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender,
and M. L. Kersten. MonetDB: Two decades of research in
column-oriented database architectures. IEEE Data Eng.
Bull., 35(1):40–45, 2012.

[28] Z. G. Ives and N. E. Taylor. Sideways information passing
for push-style query processing. In ICDE, pages 774–783,
2008.

[29] R. Johnson, V. Raman, R. Sidle, and G. Swart. Row-wise
parallel predicate evaluation. PVLDB, 1(1):622–634, 2008.

[30] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory
snapshots. In ICDE, pages 195–206, 2011.

[31] B. W. Lampson and H. E. Sturgis. Reflections on an
operating system design. Commun. ACM, 1976.

[32] P. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar,
M. Nowakiewicz, V. Papadimos, S. L. Price, S. Rangarajan,
R. Rusanu, and M. Saubhasik. Enhancements to SQL server
column stores. In SIGMOD, pages 1159–1168, 2013.

[33] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a numa-aware query evaluation
framework for the many-core age. In SIGMOD, pages
743–754, 2014.

[34] Y. Li and J. M. Patel. Bitweaving: Fast scans for main
memory data processing. In SIGMOD, pages 289–300, 2013.

[35] Y. Li and J. M. Patel. WideTable: An accelerator for
analytical data processing. PVLDB, 7(10):907–918, 2014.

[36] S. Manegold, I. Manolescu, L. Afanasiev, J. Feng, G. Gou,
M. Hadjieleftheriou, S. Harizopoulos, P. Kalnis,
K. Karanasos, D. Laurent, M. Lupu, N. Onose, C. Ré,
V. Sans, P. Senellart, T. Wu, and D. E. Shasha. Repeatability
& workability evaluation of SIGMOD 2009. SIGMOD
Record, 38(3):40–43, 2009.

[37] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich,
S. Manegold, N. Polyzotis, K. Schnaitter, P. Senellart,
S. Zoupanos, and D. E. Shasha. The repeatability experiment
of SIGMOD 2008. SIGMOD Record, 37(1):39–45, 2008.

[38] Microsoft. Implied predicates and query hints. https:
//blogs.msdn.microsoft.com/craigfr/2009/04/

28/implied-predicates-and-query-hints/, 2009.
[39] Microsoft Corp. Optimizing the Database Design by

Denormalizing. https://msdn.microsoft.com/en-us/
library/cc505841.aspx.

[40] F. Nagel, G. M. Bierman, and S. D. Viglas. Code generation
for efficient query processing in managed runtimes. PVLDB,
7(12):1095–1106, 2014.

[41] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539–550, 2011.



[42] E. J. O’Neil, P. E. O’Neil, and G. Weikum. An optimality
proof of the lru-K page replacement algorithm. J. ACM,
46(1):92–112, 1999.

[43] P. O’Neil, E. O’Neil, and X. Chen. The star schema
benchmark. http:
//www.cs.umb.edu/˜poneil/StarSchemaB.pdf,
Jan 2007.

[44] Oracle. Push-down part 2.
https://blogs.oracle.com/in-memory/push-down:

-part-2, 2015.
[45] Oracle. White paper. http://www.oracle.com/

technetwork/database/in-memory/overview/

twp-oracle-database-in-memory-2245633.pdf,
2017.

[46] Pamela Vagata and Kevin Wilfong. Scaling the Facebook
data warehouse to 300 PB. https:
//code.facebook.com/posts/229861827208629,
2014.

[47] J. M. Patel, H. Deshmukh, J. Zhu, H. Memisoglu, N. Potti,
S. Saurabh, M. Spehlmann, and Z. Zhang. Quickstep: A data
platform based on the scaling-in approach. Technical Report
1847, University of Wisconsin-Madison, 2017.

[48] H. Pirk, O. Moll, M. Zaharia, and S. Madden. Voodoo - A
vector algebra for portable database performance on modern
hardware. PVLDB, 9(14):1707–1718, 2016.

[49] PostgreSQL. http://www.postgresql.org, 2016.
[50] PostgreSQL. Parallel Query. https:

//wiki.postgresql.org/wiki/Parallel_Query.
[51] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman.

Main-memory scan sharing for multi-core cpus. PVLDB,
1(1):610–621, 2008.

[52] B. Raducanu, P. A. Boncz, and M. Zukowski. Micro
adaptivity in vectorwise. In SIGMOD, pages 1231–1242,
2013.

[53] V. Raman, G. K. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra, S. Lightstone,
S. Liu, G. M. Lohman, T. Malkemus, R. Müller, I. Pandis,
B. Schiefer, D. Sharpe, R. Sidle, A. J. Storm, and L. Zhang.
DB2 with BLU acceleration: So much more than just a
column store. PVLDB, 6(11):1080–1091, 2013.

[54] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani,
D. Kossmann, I. Narang, and R. Sidle. Constant-time query
processing. In ICDE, pages 60–69, 2008.

[55] Amazon Redshift.
https://aws.amazon.com/redshift/, 2016.

[56] Reynold Xin. Technical Preview of Apache Spark 2.0.
https://databricks.com/blog/2016/05/11.

[57] R. Ricci, E. Eide, and The CloudLab Team. Introducing

CloudLab: Scientific infrastructure for advancing cloud
architectures and applications. USENIX ;login:, 39(6), Dec.
2014.

[58] L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary,
V. Bharathan, and C. Bear. Materialization strategies in the
vertica analytic database: Lessons learned. In ICDE, pages
1196–1207. IEEE, 2013.

[59] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[60] Standard Performance Evaluation Corporation. INT2006
(Integer Component of SPEC CPU2006).
https://www.spec.org/cpu2006/CINT2006, 2016.

[61] Statistic Brain Research Institute. Google Annual Search
Statistics.
http://www.statisticbrain.com/google-searches,
2016.

[62] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J.
O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik.
C-store: A column-oriented DBMS. In VLDB, pages
553–564, 2005.

[63] Sybase Inc. Denormalizing Tables and Columns.
http://infocenter.sybase.com.

[64] T. Willhalm, I. Oukid, I. Müller, and F. Faerber. Vectorizing
database column scans with complex predicates. In ADMS,
pages 1–12, 2013.

[65] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,
and J. Schaffner. SIMD-scan: Ultra fast in-memory table
scan using on-chip vector processing units. PVLDB,
2(1):385–394, 2009.

[66] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: SQL and rich analytics at scale. In
SIGMOD, pages 13–24, 2013.

[67] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In USENIX, pages 15–28,
2012.

[68] Q. Zeng, J. M. Patel, and D. Page. Quickfoil: Scalable
inductive logic programming. PVLDB, 8(3):197–208, 2014.

[69] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In SIGMOD, pages 145–156, 2002.

[70] J. Zhu, N. Potti, S. Saurabh, and J. M. Patel. Looking ahead
makes query plans robust. PVLDB, 10(8):889–900, 2017.

[71] M. Zukowski and P. A. Boncz. Vectorwise: Beyond column
stores. IEEE Data Eng. Bull., 35(1):21–27, 2012.


