
DataChat: An Intuitive and Collaborative Data Analytics Platform
Rogers Jeffrey Leo John

DataChat Inc.
Madison, WI, USA
rogers@datachat.ai

Dylan Bacon
DataChat Inc.

Madison, WI, USA
dylan@datachat.ai

Junda Chen
DataChat Inc.

Madison, WI, USA
junda@datachat.ai

Ushmal Ramesh
DataChat Inc.

Madison, WI, USA
ushmal@datachat.ai

Jiatong Li
DataChat Inc.

Madison, WI, USA
jiatong@datachat.ai

Deepan Das
DataChat Inc.

Madison, WI, USA
deepan.das@datachat.ai

Robert Claus
DataChat Inc.

Madison, WI, USA
robert@datachat.ai

Amos Kendall
DataChat Inc.

Madison, WI, USA
amos@datachat.ai

Jignesh M. Patel
DataChat Inc.

Madison, WI, USA
jignesh@datachat.ai

Figure 1: An Interactive DataChat Session.

ABSTRACT
Enterprises invest in data platforms with the aim of extracting
meaningful information through analytics. Typically, experts create
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analytics pipelines that feed into dashboards and provide answers to
predetermined questions. This approachmakes analytics a spectator
sport for most people and introduces operational bottlenecks to
leveraging those investments. To improve the value derived from
data, many organizations are opting to open up their data assets and
allow access to awider range of users. However, using programming
languages such as SQL and Python for analytics can be difficult for
most enterprise users. DataChat provides a simplified data science
approach that is intuitive, powerful, and accessible to all data users.
The platform is built on a library of data functions that are cleanly
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abstracted to maximize efficiency and ease of use while maintaining
a rich suite of tools necessary for data science. With these functions,
users can create data analysis pipelines by using a simple point-and-
click interface in a spreadsheet view or by using natural English
interfaces. Modern sharing and collaboration features are central to
all aspects of the platform, allowing teams to easily bridge expertise
gaps. A deeper understanding of results is facilitated by providing
automatically-generated English explanations of how they were
derived. By enhancing these aspects of data science and human-to-
human communication, the platform addresses the needs that many
organizations are encountering as their analytics needs mature.
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1 INTRODUCTION
Enterprises are constantly seeking a competitive edge, and their
data infrastructure is a crucial tool in achieving this goal. While
collecting data in a warehouse or lakehouse is important, it’s sec-
ondary to the primary objective of extracting meaningful insights.
However, existing methodologies tend to be time-consuming and
demand specialized programming skills from dedicated teams, re-
sulting in process-heavy organizational structures.

In the early days of data analytics, “insights” were largely de-
fined as historical reporting. At the end of the last century, Crystal
Reports [19, 37] was a state-of-the-art reporting tool, but it had
only primitive capabilities to support live enterprise dashboards.
At the turn of the century, the Polaris [31, 32] project ushered in a
new approach to business analytics that led to the development of
Tableau [30]. Enterprise dashboards, which allowed organizations
to track key performance indicators (KPIs) to support day-to-day
operations, became common. Tableau’s success prompted the emer-
gence of other dashboard products, such as Power BI [22], Qlik [25],
and Domo [8]. The ubiquity of such needs has also led many data
platform vendors to integrate limited dashboarding capabilities
directly into their core offering.

Over the past decade, a new category of analytics tools has
emerged, such as Looker [18], Thoughtspot [33], and more recently
dbt metrics [7]. These tools leverage the benefits of an explicit se-
mantic layer that contains curated definitions, such as revenue
being the sum of the product of price and (1 - Discount) for
all relevant orders. In the early generations of dashboard tools, the
semantic layer was not explicitly abstracted, making it challenging
to manage these semantic definitions. Many of these new tools
also experiment with novel modalities for user interactions, such
as creating charts based on phrases defined in the semantic layer.

Natural language interfaces in particular have grown in popularity
and have even been adopted by more traditional dashboard plat-
forms. Another example is pairing a user’s request for a chart with
generated textual descriptions of key insights. (Section 4 discusses
this and other approaches to translating user intent to insights.)

However, a significant challenge still exists. While dashboarding
tools work well for telling users what is happening to a KPI, they
have limited capabilities to allow a user to carry out a root-cause
analysis to determine why the KPI looks that way. While some star-
tups such as Sisu [6] explicitly address this challenge, most tools
have limited capabilities for generalizing such exploration. Instead,
they provide tools such as drill-up/down, along a pre-defined, se-
mantic hierarchy or allow users to change basic chart properties to
attempt to visually identify the root cause(s).

There are two common methods for unrestricted data explo-
ration. The first is the long-standing and omnipresent Excel [9, 21].
Excel can handle many data exploration and simple analytics tasks,
and users often download data from dashboards to analyze it in
Excel. However, there are three major limitations: a) Excel has data
limits, such as a maximum of one million rows [20], b) Excel lacks
modern, ML-based methods for exploring and identifying patterns
in data, and c) repeating the analysis at a later time is a manual
process. Google Sheets and other spreadsheet tools have similar
constraints, albeit with different limits. Newer tools like Sigma Com-
puting [10] offer a spreadsheet view of data, which is also a topic
of interest in the research community [1, 4, 26], but they primarily
focus on visualization and dashboarding capabilities with limited
coverage of data science and machine learning functionality.

The second dominant approach for unconstrained data explo-
ration is usingmodern data science tools like Jupyter Notebook [23],
or its modernized versions like Google Colab [11] or Hex Note-
books [13]. However, this approach requires the user to be a pro-
grammer, with detailed knowledge of languages like Python, SQL,
and R. As a result, this approach can be challenging for enterprise
data users who are not data scientists.

The central idea behind DataChat is to provide an easy-to-use,
natural, and intuitive platform that enables users to apply data
science principles on large datasets without having to master the
mechanics of data science programming. These mechanics include
not only a language like Python but also its various subsystems,
such as Pandas, numpy, and other machine learning (ML) libraries.
DataChat aims to separate the need to learn data science coding
and library interface mechanics from the ability to use data science
principles, which involve logically utilizing essential building blocks
to solve data problems.

To achieve this goal, DataChat offers a spreadsheet-like interface
that is simple, familiar, and free of the limitations of spreadsheets.
Figure 1 shows a screenshot of the DataChat user interface. Users
can connect to databases (or queries/views within them), CSV files,
or a combination of both and perform analytics using a set of high-
level data science functions called skills. DataChat simplifies data
science functions into a set of around 50 high-level skills, which
users can easily understand and use to express their intent. These
skills provide a declarative abstraction for the most common data
science functions in a natural way, and can be invoked through
simple UI gestures. For example, a user can right-click on a value
to keep all the rows that have the same value (similar to a selection
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(a) DataChat recipe in an editor. (b) The corresponding chart artifact.

Figure 2: An editable DataChat recipe in GEL (a), corresponding to the chart artifact (b). The recipe is accessible from the
artifact menu and takes the user to an editor.

predicate in SQL). These skills cover common data analysis func-
tions, including data visualization, ML-based discovery, ML-based
insights generation, common data wrangling tasks, common SQL
tasks, and various collaboration functions.

The DataChat platform enables users to generate different types
of artifacts, including reports, charts, ML models, and ML-based
explanations. As users interact with the system, the platform au-
tomatically generates a recipe that captures the sequence of steps
in the analysis. Each artifact is accompanied by the recipe that
explains the steps taken to produce it. The recipe is typically shown
to users in a controlled natural language, called Guided English
Language (GEL), as shown in Figure 2. GEL is a declarative pro-
gramming language with English syntax and provides an intuitive
way for a user to directly interface the individual steps in a recipe.
Users can approach a recipe as GEL “code” and use a built-in editor
with debugging capabilities to step through each line (examining
the output at each step if needed), and make edits directly to the
lines/steps expressed in GEL as needed.

DataChat also offers built-in collaboration capabilities to support
analytics as a group activity. Users can co-create an artifact (and
the underlying recipe) using a live collaborative session similar
to pair-programming in traditional programming environments.
Any artifact can be shared with other users, and because each ar-
tifact has a recipe, the recipient can “continue the conversation”
and explore the results further. This is possible even across signifi-
cantly technically-diverse teams because recipes are presented in
the natural language syntax of GEL rather than requiring special-
ized technical skills.

Recipes in DataChat can be created in multiple ways. One way is
through a series of direct user requests in the user interface. Another
way is by typing a natural language sentence into a chat box, which
the system converts to discrete intents using a Large Language

Model (LLM). Prompt engineering methods and database schema
hints work together to generate a target response. DataChat GEL is
one of the languages used for the generated response code, which
makes it easier for humans to edit the response if additional changes
are needed. For simpler use cases, a phrase-based translational layer
is used, where the input text is a combination of predefined phrases
in a semantic layer. This simpler approach is often preferred for use
cases where the user’s questions are more structured and driven
by terms that can be easily encoded in the semantic layer. The
advantage of this approach is higher accuracy in translating the
intent to the response.

Overall, DataChat presents a new, intuitive, and collaborative
way for enterprises to empower a broad range of data users to
carry out ad hoc analysis, share their creations with others in the
organization, and enable anyone to understand and reproduce the
shared artifacts.

The remainder of this paper is organized as follows. In the next
section, we present an overview of the DataChat platform. Sec-
tion 3 highlights two key mechanisms that makes working with
large cloud databases efficient both from the human and cloud-cost
perspectives. Section 4 outlines the key methods that are used to
generate DataChat recipes from natural language, which includes
both a phrase-based approach and an LLM-based approach. Finally,
Section 5 contains our concluding remarks.

2 THE DATACHAT PLATFORM
In this section, we describe the key components of the DataChat
platform.
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2.1 Skills
To provide an intuitive way for users to complete deep data science
workflows, the platform provides carefully curated primitive opera-
tions within that space. These primitive operations, or skills, provide
the building blocks for deeper data analysis within DataChat.

Skills differ frommost programming languages where fundamen-
tal operations reflect computational or program flow primitives,
not logical steps. For example, most tabular data operations do not
require the concept of a loop, whereas traditional programming
languages fundamentally depend on it. Libraries built on such lan-
guages, though built specifically for data science, still inherit the
fundamental organization of those languages, resulting in a mix of
declarative and procedural operations.

Even data query languages like SQL still diverge from the way
data users approach problems. Data users approach real-world prob-
lems in sequential steps that are often highly diverse as they exper-
iment with different approaches to the problem. Query languages,
however, focus on single, parameterized requests. This makes in-
vestigations difficult if they require query iteration, multiple steps,
or wildly different domain tools.

Skills in DataChat cover a wide range of use-cases that users
frequently switch between when creating and iterating over data
science workflows. By allowing this back-and-forth interaction
within the same platform, users can have a seamless experience,
especially with large datasets where transferring data between
systems is expensive. Example categories of skills that DataChat
users leverage are shown in Table 1.

Of particular interest to many users is the ability to augment
traditional data preparation steps with machine learning and vi-
sualization steps. This seamless transition allows users to iterate
on models much faster than with specialized tools. Moreover, by
bringing machine learning capabilities such as model training and
inference into the data preparation space, the platform allows users
the freedom to use more sophisticated techniques. For example, we
have seen a number of users adjust from using simple statistical
outlier detection methods to ones based on more robust machine
learning algorithms.

Table 1: Example DataChat Skills

Data Ingestion Load data from the file <file name>
Data Exploration Describe the column <column>
Data Visualization Visualize <kpi column> using <column>
Data Wrangling Compute the <aggregate> of <column>
Machine Learning Train a model to predict <column>

User entry of skill requests takes three main forms shown in
Figure 3. The first is via user interface interactions, such as forms,
that are converted directly to discrete skill requests. The second is
via programmatic APIs that wrap requests to the DataChat platform
in more traditional analytics libraries. The third is through directly
entering a DataChat GEL sentence in a console-like interface ex-
posed to the user. All three approaches ultimately convert the user’s
intent to a discrete, parameterized request and only differ insofar as
to whether an additional translation step is necessary. For example,
the console-like interface requires a natural language parsing step.

In addition to these three approaches to invoking skills directly,
users can also auto-generate a sequence of skills using the natural
language to code generation (NL2Code) methods (see Section 4).

(a) A form in the UI.

(b) A Python API call.

(c) Composing a DataChat GEL sentence directly with au-
tocomplete.

Figure 3: The three different methods to enter the same skill.

These approaches offer interaction paradigms that correspond
to the current familiarity and comfort levels of users with a wide
range of technical expertise.

Many DataChat experts choose to use the console-like interface
because it allows fast request entry, but most novice users prefer the
visual interface since it provides more guidance on what requests
are possible.

For a user of the platform, a skill consists of three parts:
(1) An input specification that is provided by the user.
(2) A parameterized transformation that is defined by the plat-

form.
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(3) A set of output artifacts that is received by the user when
the skill has finished execution.

2.2 Execution
Skill execution follows a simple pattern. The user first creates a
directed acyclic graph (DAG) of skill requests using one of the
provided input methods (UI, DataChat GEL, Python API, or the
NL2Code methods). Building this DAG does not require executing
any computation. The user then takes an action where they would
need the results from that set of operations. At this point, the system
does the following:

(1) Convert the DAG of skill calls to a set of execution tasks.
(2) Run those execution tasks using compute resources.
(3) Return results to the user based on that execution.
Execution tasks within the framework represent tasks like “Run

SQL query” or “Train a machine learning model”. In most cases,
one execution task encompasses multiple logical skill calls from
the user. For performance reasons, the conversion of skill calls to
execution tasks is also aware of a caching layer that can execute
directly on previous results based on a shared skill sub-DAG.

One major consideration in this approach is delaying the execu-
tion of expensive computations until they are actually necessary
for the user’s experience. This is possible by keeping the logical
skill DAG of each request until execution time rather than building
subsequent requests on the results of the previous one. An easy
example of this optimization is a user projecting columns from a
table in a sequence of steps. A naive approach would be to rely on
the previous result and simply nest subsequent queries. This would
result in deep queries such as:
SELECT a FROM (

SELECT a, b FROM (
SELECT a, b, c FROM base_table

)
);

In some database engines, this query will incur significant perfor-
mance costs compared to its flattened equivalent, which is a single
query block: SELECT a FROM base_table;

By re-evaluating the execution tasks from the complete skill
DAG for each request, such optimizations can occur naturally at
execution time.

Because the user is responsible for defining the inputs, but not the
execution step, the platform can dynamically optimize how a skill is
executed.Most execution tasks within DataChat are implemented in
both SQL and Python, separately. This approach allows the system
to use the appropriate language for a variety of tasks. In most (but
not all) cases, SQL is appropriate for data operations. For example,
if data is already loaded into memory on a worker for a machine
learning task, the platform can run simple data operations there
rather than reaching back out to a source database to do so in SQL.

This execution approach allows a range of features to be built
using the same logical skills. For example, in a spreadsheet view
a user expects to run an operation like filtering values and then
immediately see the data result. For large datasets, the application
likely wants to simulate this step by providing the user with a sam-
ple of the data instead. This behavior can be accomplished naturally
by having the application automatically add Sample/Limit skills

Figure 4: Showing both user intents and application require-
ments can be optimized in one execution approach.

for the user as shown in Figure 4. To execute correctly, the platform
does not need to differentiate between steps the user made and
steps that were automatically added. This approach enables the
development of sophisticated applications that automate a variety
of analysis steps for the user.

2.3 Transparency and Reproducibility
A key aspect of data science work is the production of results
such as visualizations, models, or raw data that can be persisted
to explain or drive decisions. We refer to these result objects as
artifacts. Artifacts generally consist of a static representation of
the object the user cares about (depending on the type of artifact)
as well as instructions for how it was produced. Within DataChat,
these instructions are a serialized copy of the skill DAG called a
recipe. Artifacts can be persisted in a variety of ways, depending
on their type, but typically include some metadata (including the
recipe) stored in a structured database as well as a reference to the
data the artifact represents stored elsewhere.

When saving an artifact, such as a chart, the platform automat-
ically processes the skill DAG in a step called slicing. In this step,
the system evaluates which steps in the DAG affect the final ar-
tifact. All steps that have no effect are removed prior to saving.
Additionally, some optimizations typically reserved for execution
are applied. For example, some skill calls might be merged if they
can be represented by a single skill call. This slicing step produces
significantly simpler recipes for individual artifacts created during
a longer session of data exploration.

Every artifact is paired with a recipe to allow users to easily view
how a result was created. To provide transparency and confidence
to casual data users, every skill in DataChat has the ability to explain
its behavior to users. For technical users, this is done by providing
Python or SQL code that represents the skill. However, this code can
often be complex when edge cases and scalability considerations
are taken into account. For that reason, the platform also provides
a declarative controlled English description of what the skill did.
This description of the skill’s behavior is based on both the skill
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Figure 5: A complex exploratory recipe on the left can be
sliced down to a simple linear one automatically.

itself and the inputs the user provided. This descriptive language is
referred to as Guided English Language or simply GEL.

When artifacts are shared between users, the recipe is visible to
all users with access. This sharing of recipes allows downstream
users to more easily understand the nuances in the data or analysis
that is used to generate the artifact. Moreover, the shared recipe
allows users to easily replicate the analysis on different data and
validate the approach. In many organizations, this type of self-
documentation is critical to validate and audit decisions. Having
the system automatically create and manage recipes significantly
reduces the time users need to spend on documentation.

The other reason for recipes being so prevalent is that they allow
updating artifacts on the latest data. For the user, this is as simple as
executing the skill DAG again. In most situations, this interaction
is presented as a “refresh” because the only difference in the final
result will be based on changes in the underlying data. For a more
in-depth understanding of how the artifact was produced, a live
replay of the steps can be performed, as if an expert was entering
the steps for the first time.

Recipes are designed to be edited and updated as requirements
change. This way, creators can update steps to keep them aligned
with underlying data or process changes. Editing recipes can be
done in a variety of ways, the simplest being directly updating
the GEL representation of the recipe. Another approach is to step
through the recipe one step at a time and manually override any
steps that are no longer correct. A more technical approach is
to view the skill DAG directly in a graphical form and update
parameters, or edges manually.

2.4 Collaboration
Most users of the DataChat platform work in teams. Such teams
are frequently multifaceted and are composed of individuals with
a range of expertise to solve a variety of problems. Hence, the
platform they use must cater to teams working as a unit as well as
individuals. Additionally, the platform must be accessible to both
technical experts and non-technical experts in various domains.

To facilitate collaboration on active data exploration, the plat-
form is designed to allow multiple users to view and interact with
the same data in a user interface. To grant users fine-grained con-
trol over data access and sharing, a user’s work is organized into
individual sessions. Sessions consist of one or more underlying skill
DAGs, and hence provide logical isolation between multiple analy-
ses that the user may execute. Sessions can be shared with other
users to give them access to both the skill DAG as well as data
results within that session. Various levels of access privileges can
be granted to or revoked from individual collaborators.

Actions taken in a session are tracked in the platform itself rather
than the client, so multiple users can maintain a synchronized view
of the work. A simple session-level lock prevents concurrent skill
requests. This is appropriate for data science workflows because
an operation is typically motivated by the immediately preceding
request. If two requests are submitted at the same time, and one
is run, the other will often not hold the same logical meaning
anymore. For example, if one user creates a pivot table, another
user’s filter operation may no longer make sense. Hence, requests
sent concurrently will fail with a message to the user indicating
that another execution was already running.

Similar to active collaboration, artifacts saved within the system
can also be shared. For most artifacts, sharing directly in the plat-
form is significantly more meaningful than exporting an image or
description of the result. For example, plots can be interacted with
or even changed to explore data further. Sharing also provides ac-
cess to the underlying recipe. Permissions for shared artifacts may
include taking actions or editing them just like a session. Sharing
artifacts is a convenient way for users doing data exploration to
get feedback on specific results from subject matter experts.

Sharing with users outside the platform is also an important user
flow when working with an entire enterprise organization (because
not all employees may be users) or an ad hoc-defined group of
recipients. This mode of collaboration is facilitated by allowing
artifacts to be associated with a generated secret and key. This
secret can be included in requests to authorize access to an artifact
rather than a user directly. For some types of artifacts, especially
visualizations, it is highly convenient to include this secret in a URL
directly to allow sharing a secure link directly to results.

Managing shared objects within the platform is done through a
Home Screen UI that resembles an operating system file manager.
Users can organize artifacts and sessions into folders, which behave
both as a container for multiple artifacts as well as an artifact
themselves. From the Home Screen, users can share, view, rename,
or delete artifacts. Users can also edit the artifact’s DAG, or execute
the DAG to update the object.

While the Home Screen allows the organization of objects and
easy management, it often does not allow users to tell a story with
their results. In many enterprise settings, the results of data analysis
(charts, tables, and other insights) are presented by copying static
images out of data analysis tools into a slide deck. In DataChat,
the presentation of results can be done using an Insights Board
(IB). An Insights Board is a collection of artifacts presented in a
visual layout that the creator can define. An IB is intended to be a
presentation of results at the end of an analysis. Functionally, an
IB is modeled as a slide/poster in a presentation scenario rather
than a traditional operational dashboard. For this reason, IBs allow
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arbitrary formatting of artifact positioning and the addition of
graphical elements like text boxes. Completely unrelated artifacts
can be posted to the same IB, seeing as data science conclusions
often depend on multiple different arguments.

A typical user in DataChat will follow the following steps:
(1) Open a session and load in data.
(2) Work in that session by invoking skills.
(3) Share the session to work with coworkers and validate as-

sumptions.
(4) Publish results as artifacts to an Insights Board.
(5) Present an Insights Board with the results of the analysis.
This flow results in a presentation of results that is highly in-

teractive. Because every artifact on the Insights Board is backed
by a readable description, questions regarding how results were
obtained are trivial to answer. Moreover, because every artifact
maintains its own DAG of operations, the presenter (or even the
audience) can quickly run additional analyses to delve into the
results. This approach allows questions to be answered live when
presenting results rather than iterative sessions to reach alignment
between stakeholders.

3 SAMPLING AND SNAPSHOTS
This section highlights the built-in features of the DataChat plat-
form that enhance the user experience when working with cloud
database systems. The emergence of cloud databases has facilitated
enterprise data accessibility to a wider range of users. However,
the increasing number of users carrying out complex data science
functions using enterprise data also presents a challenge for enter-
prises – the cost of running analytics on large data volumes stored
in cloud databases, and by a larger number of users, can quickly
escalate due to the prevalent consumption-based pricing models.

DataChat addresses this challenge through two critical skills
integrated into the platform: sampling and snapshots. First, a user
can request a sample of the data to create a data analysis recipe,
which is typically the initial step in exploring and assessing data for
new or ad hoc analyses. DataChat has built-in skills for sampling
that enable users to quickly scan even large tables at a fraction of
the cost incurred to scan the entire table. This approach generates
an intermediate dataset that users can work off to carry out an
initial assessment. Sampling rates can be set, and common rates
include 10% and 1%.With the sample data, users can visually explore
the data in a tabular form, run built-in DataChat data exploration
skills to determine characteristics (such as null values), and better
understand the data. The system typically uses block-level sampling,
resulting in a significantly lower query cost for the initial data
exploration.

For instance, a user working with a new IoT dataset had a 6
billion row dataset in a cloud database. By using a 10% sample,
they reduced their cloud bill by 10 times because query costs are
generally proportional to the size of the dataset being scanned.
In the past, the data pipeline had quality issues that were only
discovered at the end of the analytics exercise. However, with the
sample data, a quick assessment using data summarization and
visualization skills in the DataChat platform was carried out to
confirm that the data quality was acceptable (e.g., the number of
missing values in the sample was within the expected range). This

human-in-the-loop approach also provided a better experience for
the user by reducing the latency in each step, which is critical
to the human experience. The steps of the recipe could then be
shared with other stakeholders/collaborators and the sampling step
can be removed to generate the final data product in a time- and
cost-efficient manner.

The DataChat platform also offers an optimization feature called
“snapshots”, which are cached copies of tables/queries from a source
cloud database. Snapshots are typically the result of a complex and
expensive data pipeline. They are often small, less than 100GB, and
are stored in a local database instance that has a fixed, low cost,
and is not based on consumption-based pricing. Users can develop
their recipes using the snapshots, allowing for efficient iteration on
the steps that make up the final recipe. Using a snapshot for this
type of iterative work provides significant savings as the larger data
pipeline does not need to be rerun to verify incremental progress.
Snapshots can also be shared among collaborating users who are
developing a recipe, providing both cost savings and a common
starting point. Snapshots are artifacts and have associated recipes,
making it easy to refresh them as needed. Snapshots can also be
created from samples of tables in a source cloud database. Thus,
snapshots provide an additional abstraction for users to develop
their analytics artifacts in a more time- and cost-efficient manner.

The DataChat platform is SOC 2 certified, and can be deployed
using a hosted SaaS model or a private SaaS within the customer’s
virtual private cloud (VPC), making governance and compliance
manageable with features like snapshots.

4 NATURAL LANGUAGE INTERFACES
As described in the previous section, the DataChat platform offers
a set of data science skills that can be declaratively invoked using
their GEL representations. Users can directly invoke these skills on
the DataChat platform to create a recipe of skills that solves the
analytics problem at hand.

The DataChat platform also provides users with higher-order
mechanisms to translate requests in natural language (English)
to recipes. Users can use these autogenerated recipes to retrieve
the answer to their request or iterate on the recipe to refine the
autogenerated steps. In this section, we describe various methods
that users can employ for generating analytics recipes (programs)
from natural language descriptions in the DataChat platform.

SQL has been the primary subject of extensive research when
it comes to the idea of using natural language to create analyt-
ics programs. Early Natural Language Interfaces for Databases
(NLIDBs) had limited usefulness due to their input grammar, which
was tailored to a specific schema. Systems such as Microsoft Eng-
lish [2], Precise [24], Nalix [16], Nalir [15], and Athena [28] have
sought to overcome this limitation by relying on semantic models
of databases and techniques like dependency parsing to accurately
interpret natural language queries.

An alternative to grammar-based methods are neural network-
based methods that train sequence-to-sequence neural networks to
translate English to SQL [36, 39]. These approaches require a large
number of training examples, consisting of the database schema
and sometimes even the contents of the entire database during the
training phase. Consequently, their application is limited in many
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scenarios, especially if the database is large (the training effort can
be prohibitively large both from the time and cost perspectives)
and the database is changing (may require expensive retraining
and methods to create new training examples). An earlier internal
version of the DataChat platform tried to pursue this direction
building on the initial prototype [14], but found this approach to
be quite fragile. High accuracy translation was a challenge and so
was the instability associated with “improving" a model with new
examples, which would then change the translations generated by
an older model, which can surprise existing users.

Recently, the field of NLP has undergone a paradigm shift with
the advent of a new class of models known as "transformers" [34].
Thesemodels have significantly enhanced the ability of sequence-to-
sequence models to learn contextual information just from natural
language sentences. The use of transformer models to translate
natural language to SQL has been a topic of extensive research,
with the various approaches falling into two main categories. The
first category involves parameter updates to a large language model
(LLM). These methods include TaBERT [40] and TaPas [12], where
a transformer model is trained from scratch, and approaches like
PICARD [29], SeaD [38], and RatSQL [35] that learn parameters on
pre-trained transformer models. The second category involves pro-
viding a set of instructions to the language model to generate text
(or code) and avoid any direct updates to the underlying model’s
parameters. This technique is often referred to as "prompt engineer-
ing" or "prompting". Here, a prompt is constructed along with the
task specification to contain all necessary information about the
problem domain to facilitate code generation. The prompt is then
fed into the LLM, which in turn generates the code. This area of
prompt engineering is evolving fast, and a recent survey paper [17]
describes many of the contemporary prompting methods.

Our approach to generating analytics recipes from user queries
uses prompt engineering to interact with Large Language Mod-
els (LLMs). The prompt engineering approach allows us to easily
adapt our solution to new problem domains. From an architectural
perspective, it also gives us the flexibility to quickly switch to a
different language model or incorporate a mixture of models into
our solution.

The prompting approach suffers from the following limitations:

• Token limit: LLMs can only process a fixed number of
tokens in their context window, which consists of both the
input prompt and generated output. As a consequence, LLM
prompts need to be precise.

• Context quality: The quality of LLM outputs is affected by
the quality of the context in the prompt, such as typographi-
cal errors, insufficient examples, and ambiguous prompts.

• Lack of domain knowledge: LLMs lack specific knowledge
about a dataset or a domain, whichmust be provided through
the prompt context.

• Sensitivity to complexity: The performance of LLMs de-
grades as the number of solution steps needed for a task
increases. [5].

Our NL-intent-to-code generation system (NL2Code) overcomes
these limitations by developing multiple technical components that
assist in composing precise prompts. These components combine

information from several sources to generate and execute analytics
recipes (code) that align with the user’s intent.

The key design considerations of our system are:

• Human-Centric Approach: LLMs, despite their impressive
abilities, are not capable of always replacing human intelli-
gence and intuition. Hence, our analytics code generation
system takes a human-centric approach and aims to incor-
porate feedback from the user whenever feasible. The user
has the option to provide feedback, rely solely on the model,
or iterate on the analytics recipe with other human experts
using the collaboration features of the DataChat platform
(cf. Section 2.4).

• Polyglot Translation: Our code generation system can
produce analysis recipes in various dialects, including SQL,
DataChat’s Python API, and DataChat GEL (cf. Section 2.1),
which has the benefit of being highly interpretable. This
flexibility in translation enables our platform to cater to a
diverse range of users. Intermediate and advanced SQL or
Python programmers have the option to select their preferred
target dialect, while novice and non-technical users may
prefer to use the more approachable DataChat GEL as their
language of choice.

• Transparency and Interpretability: Language models are
susceptible to hallucinations [42]. Thus the code genera-
tion system should not assume the correctness of the gen-
erated analytics program. This means that the generated
code should be made available to the user. This is in line
with our mission to ensure transparency of operations on
the DataChat platform as discussed in Section 2.3.

Next, we describe the components of DataChat’s analytics code
generation system, which is schematically illustrated in Figure 6.

4.1 Code Generator
The code generator in our setup is a GPT-based LLM that has been
trained to learn a conditional distribution of the next token given a
set of previous tokens. The underlying task that this model accom-
plishes is that of mapping tokens in the natural language questions
to tokens in the target analytics dialect. LLMs are known for their
ability to learn from a small number of examples within the prompt
context, called "few-shot learning" [3]. These models can perform
this task by capturing latent patterns from input-output example
pairs without the need to update parameters. LLMs’ few-shot and
in-context learning abilities allow us to adapt a general-purpose
language model to generate analytics recipes. We achieve code
generation by providing the model with sample natural language
(NL) question-analytics recipe training pairs in the prompt.

It is important to note that our architecture is designed to be
extensible, allowing for the current model to be replaced by any
custom pre-trained or fine-tuned model in the future. This ease of
modification highlights the modular nature of the code generation
component in our system.

The choice of dialect to represent analytics recipes in the training
dataset is crucial as LLMs need to learn the representation from a
small set of examples. Further, LLMs are sensitive to the number of
distinct operations that it needs to learn for composing a solution.
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Figure 6: Architecture of DataChat’s NL2Code System.

We chose DataChat’s Python API as the dialect for representing
the analytics recipes.

The DataChat Python API is a wrapper around the skills that
are available in the DataChat system. Function invocations in the
DatChat Python API have an equivalent DataChat GEL translation.
For example, a GEL utterance like “Compute the Average Age
and Median Salary for each JobLevel” can be represented in
the Python API as:

data.compute(
aggregates = [Average('Age')], Median('Salary')],
for_each = ['JobLevel']

)

Our decision to use Python as a dialect is motivated by the fact
that the LLM that we use is most proficient in Python. Additionally,
the DataChat Python API’s skill interface offers a succinct way to
invoke data analytics functions, reducing the number of functions
that the model has to learn to generate an analytics recipe. Finally,

DataChat Python API calls can be easily translated to more Dat-
aChat GEL sentences, which makes the programs interpretable and
easier to edit.

4.2 Semantic Layer
A semantic layer (SL) is an abstraction that encapsulates domain-
specific concepts, links these concepts to the user intent, and offers
a contextual representation of these concepts to the LLM. This
contextual information provided by the semantic layer enriches the
knowledge available to the LLM about the problem domain. The
information represented in the SL includes but is not limited to
annotations about the data, definitions of domain-specific concepts,
metrics, dimensions, and hierarchies.

Let’s consider a sales dataset with a column PurchaseStatus,
that can take the values Successful, or Unsuccessful. For a ques-
tion like “How many purchases were successful in the month of
April,” the model needs to infer that “successful purchases” in the
input NL query translates to the predicate where PurchaseStatus
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= Successful. LLMs are not capable of making this association di-
rectly from the NL question and the schema alone unless additional
information about the problem context is provided to the model.
The SL bridges this gap by providing additional context to the LLM
for answering the question.

The SL is composed of two main components:

(1) A representation layer that programmatically represents the
concepts related to the data schema and problem domain.

(2) A retrieval mechanism that retrieves the concepts that are
relevant to the NL query.

The SL first identifies a set of implicit concepts based on at-
tributes derived from the NL query, like keywords, and the prob-
lem domain. These identified concepts are then matched with the
dataset column names and a known set of concepts in the inferred
problem domain. All such matches are weighted based on relevance
and the top few are selected for prompt augmentation. The SL out-
puts need to be as concise as possible to account for the prompt’s
limited token budget.

4.3 Example Retrieval
In a prompting setting, LLMs are known to exhibit superior perfor-
mance when the model is provided with a set of examples that are
relevant to the task. In the case of analytics program generation,
the examples should be representative of the variety of analytics
functions and their compositions.

In order to encompass this wide range of analytics functions, we
establish a collection of question-solution pairs that vary in both
the complexity of the natural language question and the analytics
program ( see Section 4.7 for problem space characterization). These
examples span several problem domains such as sales, finance, and
healthcare.

Due to the model’s limited token budget, it’s crucial to provide
examples that are relevant to the user’s natural language question.
To identify these relevant examples, we first rank the examples in
our repository based on their similarity (e.g., cosine) with the user
query. Next, from the ranked example list, we select examples that
feature a unique set of analytics functions.

4.4 Prompt Composer
The prompt composer serves to integrate information from both
the semantic layer and example retrieval components in order to
synthesize a prompt that generates valid DataChat Python API code
using the LLM. The resulting prompt has the following structure:

(1) API documentation: This section of the prompt contains the
names of all the functions in the DataChat Python API, and
their signatures.

(2) Examples: The prompt is augmented with sample programs
in the DataChat Python API, which are supplied by the exam-
ple retrieval component. These examples allow for few-shot
learning and assist the model in adapting its outputs to the
new API syntax. Since the DataChat API is closed-source, it
is reasonable to assume that the LLM has no prior knowl-
edge of its syntax. So, we rely on the model’s ability to learn
within the context of the prompt, with the assistance of a
limited number of examples.

(3) Dataset schema and semantic information: We utilize a se-
mantic layer to present the schema of potential datasets and
other domain-specific information that is pertinent to the
user’s natural language (NL) intent to the LLM. Such addi-
tional data augments the context information available to
the LLM and may be beneficial to code generation.

(4) User intent: Finally, the natural language question by the
user is added to the end of the prompt.

The token limits of LLMs introduce a trade-off between the vari-
ous types of information that can be incorporated into the prompt.
The prompt composer can utilize the program space characteri-
zation outlined in Section 4.7 to balance the composition of the
prompt context. For instance, the prompt composer can decide to
omit examples in favor of additional information from the semantic
layer in order to address more complex queries.

4.5 Program Checker
The program checker’s purpose is to post-process the code gener-
ated by the LLM for validating and correcting the program. The pro-
gram checker converts the LLM-generated analytics program into
an abstract representation, keeping track of data and functional de-
pendencies. Using this abstract representation, the program checker
performs syntax and type checks and validates the composition
of functions in the generated analytics program. Additionally, the
checker streamlines the analytics program by removing redundant
lines of code such as print statements.

4.6 Human Iteration
The DataChat platform offers users an editor where they can access
a post-processed analytics recipe. Users can validate this recipe,
execute the code directly, or, with GEL, step through the recipe.
By providing this user-friendly editor interface as described in
Section 2, the platform enables users to edit, debug, and execute
their analytics recipe with ease.

One of the features, which is unique to the DataChat platform, is
the ability to debug the generated GEL recipe in an IDE-like manner.
Figure 2a shows DataChat’s IDE for GEL recipes. The editor has
controls for adding breakpoints (indicated by the red dot), executing
GEL recipes step-by-step, and pausing the execution at any given
point.

The ability to interactively execute and edit the analytics recipe
is a powerful paradigm that allows users to validate the generated
analytics program on the fly. With this functionality, users can eas-
ily and quickly make changes to analytics recipes, allowing them
to validate their work without having to go through repeated it-
erations. Thus, users can save valuable time and execution costs,
thereby reducing the overall cost to generate insights in an organi-
zation.

The DataChat platform is designed to cater to the needs of a
broader range of users by offering a polyglot code generation and
execution interface. This means that both novice and expert users
can use the analytics recipe generation functionality to quickly find
solutions or a good starting point for their analytics problem. Users
can then iterate on these recipes to find the final solution that best
meets their requirements.
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Additionally, as the code generation process involves human
input at several stages, the platform can learn and improve over
time from human feedback.

Figure 7: Distribution of all samples from the Spider dev
split characterized by misalignment (𝑀) and the degree of
composition (𝐶), annotatedwith the number of points in each
zone. Based on the distribution of the scores, the thresholds
for𝑀 and 𝐶 were chosen to be 0.4 and 30 respectively. Most
samples are characterized as (low, low).

4.7 Experiments
The performance of a text-to-analytics code LLM can vary based
on the “difficulty” of a question, which is influenced by factors
such as the question structure, the complexity of the solution, and
the complexity of the schema [27]. The challenges resulting from
these factors necessitate the implementation of distinct solution
strategies.

To aid with formulating solutions, we develop a formal charac-
terization of difficulty, which relies on both the question input and
the target schema. We devise two metrics, namely:

(1) Misalignment (𝑀): This metric captures the extent to which
tokens in the NL query are disassociated with table identi-
fiers and other semantic concepts relevant to the analytics
task. This score𝑀 is computed as a weighted sum of a query
mismatch score 𝑠1 and a schema irrelevance score 𝑠2. 𝑠1 cap-
tures the mismatch between keywords from the NL query
and the table identifiers, such as column names. 𝑠2 formalizes
the difficulty of linking schema identifiers such as column
names to real-world concepts.

(2) Degree of Composition (𝐶): This metric measures the func-
tional complexity of an analytics program. For instance, in
a SQL query, the functional complexity is a measure of the

number of SQL functions that are weighted by their nesting
level (a top-level SELECT has lesser weight than a SELECT in
a sub-query) or by their compositional complexity (a JOIN
operation carries more weight than an aggregation function
on a single column).

We evaluate our approach using the development (dev) partition
of the Spider text-to-SQL dataset [41]. First, we categorize the dev
partition into four groups, jointly classifying the samples into high
and low buckets along the dimensions of𝑀 and 𝐶 .

As seen in Figure 7, the Spider dev split follows a long-tailed
distribution for both𝑀 and𝐶 and has very few samples in the high
zones. To achieve a more balanced split, we randomly sample an
equal number of question-solution pairs from each of the charac-
terized zones to generate the final test set T𝑠𝑝𝑖𝑑𝑒𝑟 , which is roughly
10% of the entire dev split. Because Spider was publicly available
when most pre-trained GPT models were trained, we manually
create an additional evaluation set T𝑐𝑢𝑠𝑡𝑜𝑚 on tabular data, which
was released in the public domain fairly recently.

For each NL query 𝑞 in the evaluation set T = T𝑠𝑝𝑖𝑑𝑒𝑟 ∪T𝑐𝑢𝑠𝑡𝑜𝑚 ,
we generate a DataChat Python API code snippet 𝑠 as the predicted
solution.We then calculate the execution accuracy (EA) for each 𝑠 by
comparing it against a ground truth solution 𝑠 . Execution accuracy
is a binary (1, 0) metric that compares the results of executing
the generated program with a ground truth execution result. The
execution accuracy for each (𝑞, 𝑠) pair is aggregated into one of
the four characterization sectors, as seen in Table 2, We note that
performance is the most impacted in the high misalignment and
high complexity zone. We also note that higher complexity impacts
performance more adversely than higher misalignment.

In summary, our NL2Code system is designed to prioritize user
flexibility and program correctness by offering the option of gen-
erating code in multiple languages and providing a transparent
view of the code being generated. Users can validate their pro-
grams in any of the three supported languages (GEL, SQL, and
Python) and make any necessary changes before execution. More-
over, users can decide to decompose a complex analytical question
into a sequence of easier, targeted questions, whose responses are
individually editable. Artifacts generated along the way are also
persisted by default, thereby providing the user with a multi-turn
program execution paradigm. The easy-to-digest GEL output from
the system simplifies the understanding of the analytics code and
can be easily translated into other dialects such as Python and SQL.

4.8 Phrase-based Translation
The phrase-based translation method is complementary to LLM-
basedmethods, whereby the input text consists of predefined phrases.
These predefined phrases and their corresponding analytics pro-
gram (or GEL) translations are defined in the semantic layer.

Unlike the LLM-based methods, this method is simple in that
extracting information from user utterances is just a lookup of the
concepts (phrases) represented in the semantic layer.

The “Visualize" functionality in DataChat drives phrase-based
translation. This is part of the extensive repertoire of analytics skills
in DataChat as discussed in Section 2.1. The GEL syntax for the
Visualize skill is as follows:
Visualize <KPI> <grouping phrase> <filter phrase>

213



SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Rogers Jeffrey Leo John et al.

The KPI entity can be aggregate functions, formulae, or a combi-
nation of both on columns in a dataset. The grouping phrase and
filter phrase are the equivalents of the group by clause and predi-
cates in SQL. Conjunctions such as “and”, and “or” can be used to
combine multiple filter phrases. Concepts and their corresponding
analytics program definitions can be added to the semantic layer
using the Define skill.

The phrase-based translation approach is useful when the user’s
questions have a fixed structure and are driven by terms that can
be easily represented as simple English phrases. The advantage of
this approach is higher accuracy in translating the intent to the
response as the phrases are deterministically matched.

(𝑀,𝐶)
Dataset

T𝑠𝑝𝑖𝑑𝑒𝑟 T𝑐𝑢𝑠𝑡𝑜𝑚
samples mean EA samples mean EA

(low, low) 25 0.84 20 0.65
(low, high) 25 0.76 22 0.59
(high, low) 25 0.80 26 0.73
(high, high) 25 0.68 22 0.25
Mean 0.77 0.57

Table 2: Mean execution accuracy (EA) on the evaluation sets
T𝑠𝑝𝑖𝑑𝑒𝑟 and T𝑐𝑢𝑠𝑡𝑜𝑚 , grouped according to their misalignment
(𝑀) and degree of composition (𝐶) scores.

5 CONCLUSIONS
Human efficiency in finding deeper insights hidden in data is cur-
rently a critical challenge, as the value/cost of human time in an
organization is increasing. This trend is likely to persist into the fu-
ture. DataChat is addressing this challenge by offering an intuitive
data science platform that is increasing the range of users who can
perform sophisticated data analytics. The platform is based on a
paradigm of a collection of skills that can be expressed via a visual
interaction or explicit composition in a controlled-natural language
called GEL. It also supports programmatic translation from natural
language using an NL2Code component. This component has both
a structured phrase-based translation layer, and a more general
(unconstrained) LLM-based translation layer to convert natural lan-
guage (English) to analytics code. The translation layer is polyglot
to appeal to a broader class of users. The platform adopts a modu-
lar approach across its translation layers as the LLM space is fast
evolving and it is important to plan for changes to the specific LLM
that is used in the platform. Close integration with a semantic layer
is also critical to make the translation layer generate high-quality
responses. Finally, the platform includes cost-conscious features
such as snapshots and sampling, which are essential in the modern
cloud era, especially when the goal is to open analytics to everyone
in an organization while managing the operational costs associated
with using modern consumption-based cloud database systems.
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