
152

Exploiting Structure in Regular ExpressionQueries

LING ZHANG, University of Wisconsin-Madison, United States

SHALEEN DEEP,Microsoft Gray Systems Lab, United States

AVRILIA FLORATOU,Microsoft Gray Systems Lab, United States

ANJA GRUENHEID,Microsoft Gray Systems Lab, United States

JIGNESH M. PATEL, University of Wisconsin-Madison, United States

YIWEN ZHU,Microsoft Gray Systems Lab, United States

Regular expression, or regex, is widely used to extract critical information from a large corpus of formatted

text by finding patterns of interest. In tasks like log processing, the speed of regex matching is crucial. Data

scientists and developers regularly use regex libraries that implement optimized regular expression matching

using modern automata theory. However, computing state transitions in the underlying regex evaluation

engine can be inefficient when a regex query contains a multitude of string literals. This inefficiency is further

exasperated when analyzing large data volumes. This paper presents BLARE, Blazingly Fast Regular Expression,
a regular expression matching framework that is inspired by the mechanisms that are used in database engines,

which use a declarative framework to explore multiple equivalent execution plans, all of which produce the

correct final result. Similarly, BLARE decomposes a regex into multiple regex and string components and then

creates evaluation strategies in which the components can be evaluated in an order that is not strictly a

left-to-right translation of the input regex query. Rather than using a cost-based optimization approach, BLARE
uses an adaptive runtime strategy based on a multi-armed bandit approach to find an efficient execution

plan. BLARE is also modular and can be built on top of any existing regex library. We implemented BLARE on

four commonly used regex libraries, RE2, PCRE2, Boost Regex, and ICU Regex, and evaluated it using two

production workloads and one open-source workload. BLAREwas 1.6× to 3.7× faster than RE2 and 3.4× to 7.9×
faster than Boost Regex. PCRE2 did not finish on one of the workloads, but on the remaining two workloads,

BLARE improved the performance of PCRE2 by 3.1× to over 100×. For the open-source dataset, BLARE provided
a speed up of 61.7× for ICU Regex. BLARE code is publicly available at https://github.com/mush-zhang/Blare.

CCS Concepts: • Information systems→ Structured text search; Database query processing.

Additional Key Words and Phrases: regular expression, adaptive query processing.

ACM Reference Format:
Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu. 2023. Exploiting

Structure in Regular Expression Queries. Proc. ACM Manag. Data 1, 2, Article 152 (June 2023), 28 pages.

https://doi.org/10.1145/3589297

1 INTRODUCTION
The ability to collect and analyze large volumes of log data is crucial for large-scale system

management to facilitate monitoring, process management, outlier detection, security, and customer

Authors’ addresses: Ling Zhang, University of Wisconsin-Madison, Madison, Wisconsin, United States, ling-zhang@cs.wisc

.edu; Shaleen Deep, Microsoft Gray Systems Lab, United States, shaleen.deep@microsoft.com; Avrilia Floratou, Microsoft

Gray Systems Lab, United States, avrilia.floratou@microsoft.com; Anja Gruenheid, Microsoft Gray Systems Lab, United

States, anja.gruenheid@microsoft.com; Jignesh M. Patel, University of Wisconsin-Madison, Madison, Wisconsin, United

States, jignesh@cs.wisc.edu; Yiwen Zhu, Microsoft Gray Systems Lab, United States, zhu.yiwen@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2836-6573/2023/6-ART152

https://doi.org/10.1145/3589297

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

HTTPS://ORCID.ORG/0009-0003-2228-3945
HTTPS://ORCID.ORG/0000-0003-2342-4060
HTTPS://ORCID.ORG/0009-0007-5760-8657
HTTPS://ORCID.ORG/0009-0009-2547-8610
HTTPS://ORCID.ORG/0000-0003-3653-2538
HTTPS://ORCID.ORG/0009-0005-6857-7505
https://github.com/mush-zhang/Blare
https://doi.org/10.1145/3589297
https://orcid.org/0009-0003-2228-3945
https://orcid.org/0000-0003-2342-4060
https://orcid.org/0009-0007-5760-8657
https://orcid.org/0009-0009-2547-8610
https://orcid.org/0000-0003-3653-2538
https://orcid.org/0009-0005-6857-7505
https://doi.org/10.1145/3589297

152:2 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

support. For example, for large-scale cloud providers, operational logs are a critical source of

information to help them understand usage characteristics and understand what enhancements

may be needed to improve the performance and security of their cloud products.

A key hurdle in effective log analytics is the unstructured nature of logs, which renders them

unsuitable for analysis using an RDBMS [45]. Instead, log analysis is routinely performed using a

data science approach. Typically, a data scientist obtains operational logs, performs exploratory

data analysis in a high-level language (such as Python), followed by querying the logs to extract

structured information from the logs. The output is then used as input for downstream processing

tasks. We demonstrate two examples, which motivated this work, to illustrate this scenario.

Example 1. Alice is a data scientist who is analyzing the deployment of virtual machines (VMs)
in the cloud. She wants to identify how frequently VMs are being redeployed due to resizing within
clusters with names starting with us-east-X. Her first step is to extract the relevant VM ids using the
regex: replacing VM (VmId=([a-z0-9\-]+), VmName=us-east-X-([a-z0-9]+)-vm . Once the
VM ids have been identified, Alice can analyze when the VMs were created and replaced.

Example 2. Bob is a data scientist who is responsible for identifying recurring customer issues for
a cloud database application. In particular, Bob wants to understand how frequently errors happen
because of failed I/Os. He quickly identifies that the I/O object and error messages can be extracted
via the regexes Read on \"(.+)\" failed: (.+) and Write on \"(.+)\" failed: (.+)
respectively. Bob runs these expressions on the logs to find the objects on which I/O requests failed.
Following this step, Bob can dive deeper into the analysis of how frequently I/Os fail due to software
issues, hardware failures, etc.

Several prior works have looked at speeding up such analytics pipelines by proposing new

architectural frameworks for streaming data [19], proposing novel distributed systems [37], de-

veloping auto-tuning knobs in existing systems [57], and building accelerated type systems [74].

Most of these systems use regexes and their extensions as core components. Despite its importance,

accelerating regex matching for analytics has received scant attention in the database community.

In both the examples above, the first step in identifying the parts of the log that contain the relevant

information (VM ids for Example 1 and error messages/objects for Example 2) is a key bottleneck

for data scientists. Further, such regex computation is often done with a human-in-the-loop, as at

times the data scientist has to experiment with different patterns. Thus, there is a critical need to

speed up the evaluation of regexes.

Analytics frameworks and data management solutions routinely use existing regex libraries

as pluggable modules under the hood. The two common state-of-the-art libraries that are used

in practice for regex are RE2 and PCRE2. RE2 is an open-source library developed by Google and

powers regex matching for spam filtering, code search, and indexed document search in Gmail,

Google Sheets, etc. Popular data exploration tools, such as Microsoft’s Kusto, also use RE2 for regex
evaluation internally in their platform [65]. RE2 has a low memory footprint and offers a predictable

running time. PCRE2 is a well-known library that is significantly more expressive than RE2 and

has comparable performance with respect to RE2. Both MariaDB and PostgreSQL use PCRE2 as the

default regex evaluation library and RE2 is available as an alternative library. Essentially, regex

evaluation frameworks are present in a multitude of data settings including data exploration and

cleaning, intrusion detection, and pattern discovery.

Performance Improvement Challenges and Desiderata. We make four key observations that

form the basis for the desiderata for our solution.

R.1 It is important that our approach is engine agnostic, i.e., the benefits of our approach extend to

multiple engines. We make the conscious choice of not modifying the code of the underlying

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:3

regex engine in order to ensure that the benefit of our ideas extend to any engine. Thus, as

improvements are made to existing regex engines, our solution can leverage these benefits

immediately.

R.2 We want our solution to be extensible. It should be easy to integrate new optimizations into

the framework and have no long term dependency on any specialized hardware or software.

(This aspect allows our method to be used in conjunction with methods such as using FPGAs

to run an existing regex engine.)

R.3 While we want to speed up the entire regex workload, it is also important to make sure that

we do not introduce large regressions for any specific query.

R.4 We should not assume availability of statistics or catalogs about the input logs or the work-

loads. A significant fraction of log analytics is performed over adhoc logs and queries written

by data scientists on a need to know basis. Therefore, it is important to offer good performance

for this scenario.

Solution Overview. To address the goals outlined above, we propose a lightweight framework that

sits on top of a regex evaluation engine and uses it in a blackbox fashion. We exploit the observation

that alternate ways of substring matching in regex can bring significant performance gains. Most

regex matching solutions are based on automata theory, where a regex query is compiled into an

NFA (non-deterministic finite automata) or a DFA (deterministic finite automata). Log lines are fed

to the automata character by character until the automata reaches an accepting state. At each step,

a character from the input is consumed by the compiled regex and the internal automaton keeps

track of the current state after transition as well as the list of potential next states. However, using

automata to perform regex matching also comes at a performance cost. Each literal character in the

input regex is converted into a state in the automata. Performing the state transitions and internal

bookkeeping in the automata when matching the substring is an added overhead compared to

directly performing a string match using standard string matching algorithms. In fact, the overhead

can be as high as 3× (we demonstrate this in Section 2.3). This observation suggests that a principled

way of shifting the computation from an automata-based evaluation to a string matching paradigm

can potentially bring substantial performance gains.

1.1 Our Contribution
In this paper, we present BLARE, a novel fast regex query evaluation framework that carefully

exploits the inherent structure within a regex query and identifies the best evaluation strategy.

More specifically, we make the following contributions.

1. A new framework for regex evaluation. BLARE is a novel framework that uses an underlying

regex evaluation engine as a blackbox and improves its performance. In particular, we make no

assumptions about the underlying engine (R.1), the presence of any specialized hardware (R.2), or
statistics (R.4). BLARE complements existing regex evaluation engines by using a regex splitting

strategy that partitions the regex and carefully moves the computation out of the underlying

engine to improve query performance. To demonstrate the applicability of BLARE with respect to

regexes seen in the wild, we analyze regexes found in 14.5M publicly available notebooks on GitHub

published between 2017-2020. Our analysis shows that at least 35% of all the regexes used can

potentially benefit from BLARE (see Section 2.3). Obtaining a performance improvement requires

examining several non-trivial implementation considerations, which we discuss in Section 4.

2. Learning on a budget.We use lightweight mechanisms to identify whether our new evaluation

strategy is better than running the entire regex as-is on the regex engine. This approach contextually

picks the right execution strategy, which includes simply executing the regex query unmodified in

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:4 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

the underlying regex engine. Using a learning-based technique is key to achieving our goal of not

introducing large regressions for queries in our workload (R.3).

3. Experimental Evaluation. To demonstrate that BLARE is engine agnostic and widely applicable

to several engines, we implement it alongside four existing regex engines: RE2, PCRE2, ICU Regex
(the regex engine used in MySQL [72]), and Boost Regex (the regex engine used in Lucene++ [58]

and C++ standard library [78]).

We highlight two key results from our empirical evaluation. First, BLARE significantly improves

performance across all considered workloads across all the engines. BLARE provides an average

improvement of 4.0× (and up to 7.9×) for the two production workloads over all engines. For

the open-source workload, the improvement ranges from 1.6× to 168.3× across the four engines.
Second, the overhead of the learning component in BLARE is minimal. For regex queries where

our rewriting is slower, BLARE is able to quickly learn on-the-fly and pick an efficient evaluation

strategy.

Overall, our experiments show that BLARE is a simple and effective method to speed up the

processing of regex queries. Further, to the best of our knowledge, our work is the first step towards

realizing a general, cost-based optimizer framework that targets regex evaluation for log analytics.

The remainder of the paper is structured as follows. Section 2 presents the relevant background

and existing known optimizations. Section 3 presents the framework and main ideas behind BLARE,
and Section 4 describes other design parameters considered in developing BLARE. An extensive

empirical evaluation on real-world (production and academic) datasets is presented in Section 5.

We discuss the related work in Section 6 and conclude in Section 7.

2 BACKGROUND
In this section, we begin with the notation and the class of regex queries that are considered in the

paper. Given a finite alphabet Σ, the syntax of regex can be defined by:

𝑅 : ∅ | 𝜀 | 𝑐 | (𝑅 | 𝑅) | (𝑅 · 𝑅) | (𝑅∗)
where ∅ denotes the empty language, 𝜀 is the language containing the empty string {𝜖}, 𝑐 ∈ Σ

denotes the language consisting of the single character {𝑐}, 𝑅 | 𝑅 is the union of two languages,

𝑅 · 𝑅 is the concatenation of two languages, and 𝑅∗ denotes zero or more concatenations of the

language 𝑅. We denote by R the set of all possible regular expressions. The language of regular

expression is defined by L : R → 2
Σ∗
:

L(∅) = ∅
L(𝜀) = 𝜖

L(𝑅1 | 𝑅2) = L(𝑅1) ∪ L(𝑅2)
L(𝑅1 · 𝑅2) = L(𝑅1) · L(𝑅2)

L(𝑐) = {𝑐}
L(𝑅∗) = L(𝑅)∗

The concatenation operator (denoted by ·) over languages is defined as 𝐿1 · 𝐿2 = {𝜔1𝜔2 | 𝜔1 ∈
𝐿1, 𝜔2 ∈ 𝐿2}. The closure operator (denoted by ∗) is defined as 𝐿∗ = ⋃

𝑖≥0 𝐿
𝑖
where 𝐿0 = {𝜖} and

𝐿𝑖 = 𝐿 · 𝐿𝑖−1 for any 𝑖 > 0.

We define literals← Σ∗. Given a regex 𝑅, we can rewrite the regex as,

𝑅 ← (prefix 𝑆 suffix)

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:5

str0 str1 str2 str3 str4 str5 str6 str7 str8 str9
Literal Components in Regexes

0

20

40

60

80

100
Ru

nn
in

g
Ti

m
e

(s
)

C++ std::string::find RE2 PartialMatch PCRE2 Match

Fig. 1. Matching time comparison on a production dataset. Using C++’s std::string::find(), RE2’s PartialMatch(),
and PCRE2’s Match()

where prefix and suffix are literals1. In other words, we can decompose the regex by extracting
the letters at the beginning and end of the expression. Note that both the prefix and the suffix can
be empty. As an example, the regex [0-1]∗ has no prefix or suffix but the regex from Example 1 has a

prefix replacing VM (VmId= and a suffix -vm . In practice, there are several standards defined

for writing concise regexes. POSIX defines the basic regex (BRE) syntax that uses metacharacters

such as ^ and $ to signify the beginning and the end of a term. The metacharacters ? and +
are used to signify that the token preceding them is matched zero or more times and one or more

times respectively. The syntax also defines shorthands such as \d (to denote [0-9]), \w (to

denote [a-z]), etc. We refer the reader to the full standard specification [11] for more details.
2

Grouping syntax in regexes, which is part of the POSIX standard [42], allows extracting the

matched content from the input logs. POSIX standard allows creating groups by placing a regex

within the parentheses. Any data that matches the subregex within the parentheses is captured and

can be returned to the user. For example, the regex in Example 2 Read on \"(.+)\" failed:
(.+) contains two groups and will only match content delimited by Read on \" and \"
failed: for the first group. The second group will contain matched content delimited by \"
failed: and the end of the log line. In this paper, unless specified otherwise, we use capture

groups in our experiments to extract the matched content and return that to the user. For use

cases that only require counting log lines containing a match or finding the longest match, regex

libraries provide specialized methods. We show that our approach is also beneficial in this setting

(see Section 5.5.1).

2.1 Evaluation Techniques

Regex evaluation can be broadly classified into two classes. The first regex evaluation method uses

an NFA. An NFA implements a space-efficient automaton. A defining characteristic of an NFA is

that it is possible to reach multiple states from any given state. In the worst case, it is possible

that every state may be reachable from a given state. Thus, each character requires 𝑂 (𝑚) memory

lookups, where𝑚 is the number of states in the automata. The benefit of an NFA is its compactness

compared to a DFA. On the downside, an NFA is generally slower than a DFA.

A DFA is a special case of NFA where each state and input can transition to exactly one state. This

also means that a DFA can be exponentially large compared to an NFA, but regex evaluation is

1
We refer to these as string literals and literal components interchangeably.

2
Operators such as look-ahead and look-behind are not a part of the POSIX API.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:6 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

faster because every transition takes 𝑂 (1) amount of time. This is the main reason why a DFA is

the preferred implementation for regex evaluation unless the space overhead is a concern.

String matching is a special case of a DFA, where the automaton is acyclic when viewed as a graph

and there is exactly one start and one accepting state. In practice, string matching is performed

using specialized algorithms such as the celebrated KMP [46] and Aho-Corasick [1] algorithm.

String matching algorithms run in time linear in the size of the input string and the searched pattern.

Most high-performance implementations of string matching make use of hardware features such

as SIMD, vectorization, etc.

In order to demonstrate the performance gap between specialized algorithms and DFA to perform

string matching, we develop a microbenchmark where the regex contains only string literals. Figure

1 shows the performance when executing the regex on a production cloud service log dataset
3
. The

regexes vary in length from 5 (str4) to 27 (str6 and str7) with the mean length being 16.3 characters.

They mostly contain letters of the English alphabet and some less frequently occurring characters

such as underscore, round brackets, colon, and hyphens. For these regexes, string matching is

consistently 2 − 3× faster compared to the best of RE2 and PCRE2. This experiment illustrates the

potential benefit of moving computation out of automata-based matching for string matching.

2.2 Known Optimizations in Existing Systems
The most common optimization used that is relevant to our work is the idea of prefiltering. The

basic idea of prefiltering is to eliminate from consideration any input that does not contribute to

the result. It is implemented as an initial inexpensive pass before the more expensive computation

is performed. Instead of evaluating the regex directly, most systems apply some form of prefiltering-

based ideas. Automata-based regex matching is performed only if the input passes the prefilter.

Both Snort [22] and Suricata [71], two popular open-source intrusion detection systems, use string-

based prefiltering extensively on network packets to find suspicious packets to do more intensive

checking.

RE2 also employs a prefiltering approach. If the regex begins with a sequence of string literals

(we call this a prefix), then RE2 takes the first and the last character of the prefix and searches the

input for a candidate starting point that has the same first and last character as the prefix and the

same length as the prefix [32], a variant of the classic Boyer-Moore [12] algorithm. This approach

is memory efficient and has less overhead for long prefixes.

PCRE2 also contains string-matching-based optimizations. Whenever a character is detected,

PCRE2matches it using a character comparison. For example, the regex [^a] is processed specially

since it is the only character within the group [38]. It makes extensive use of just-in-time compilation

and has sophisticated algorithms to avoid backtracking when evaluating regexes [38].

2.3 Input Properties for Log Analysis
In this subsection, we discuss some of the real-life properties of the logs and regex queries that we

have observed in our production settings and open-source datasets. To understand how prevalent

string literals in regexes are, we analyzed 14.5 million publicly available notebooks on GitHub

authored between 2017-2020. We found that at least 35% of the regexes (out of 200, 000 unique

regexes) contain at least one literal component. We also analyzed ∼9000 regexes and their logs

across two different applications – analysis of cloud VMs and finding errors in a production cloud

database server logs. We make two key observations. First, the query structure of the regex queries

is often simple. Most expressions contain long string literal components and the actual regex that

requires automata-based execution does not have any nesting or complex unions. Most of these

3
We anonymize the strings to avoid revealing potentially sensitive information.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:7

Underlying Regex Engine

Splitter

Regex r

Learner Split-Matcher

Output r(L)

BLARE

mode

regex splitsregex splits

Log L

(sample)

1

2

3

4

5

6

Fig. 2. BLARE architecture diagram. It takes the log and the regex as the input, and returns the query result
as output.

regex queries are also written by humans and thus, readable. Second, the generated logs contain

messages from multiple system components that are mixed together. Since the input extraction for

downstream tasks is usually not repeated on a given log, it is uncommon to group the log messages

based on the system component generating it. Doing such a partitioning of the log also makes

it harder to perform temporal analysis on understanding the sequence of events logged by other

components. Further, log partitioning means that a post hoc log stitching via index lookups on

the timestamp may be required to find log lines from other components around the timeframe of

interest, which is an expensive operation. As an example, a single general log for a cloud-hosted

VM stores information about clients connecting and disconnecting, query statements, network

information, system process information, etc. Once the user/analyst finds errors in the log, they

may want to see what was happening on the VM a few seconds before the error to gather additional

useful clues. The overall implication of having a single log is that for most regex queries, only a

small fraction of log lines contain any potential matches.

3 FRAMEWORK AND TECHNIQUES
In this section, we begin with an overview of BLARE. Figure 2 shows the overall architecture of
BLARE. It consists of three main parts: namely, a splitter, a split-matcher, and a learner. The first part
is the splitter that takes the input regex and decomposes it into multiple components by performing

a single scan of the regex and extracting the string literals. The splitter is run exactly once when

the regex is submitted and has negligible overhead.

The split-matcher is responsible for executing the decomposed regex(es) generated by the splitter

on the log data. For each log line, it first matches the literal components. If the log line contains

matches to each literal component, then the regex engine is invoked for a full evaluation. In

some cases, directly running the decomposition generated by the split-matcher may introduce an

unintentional slowdown. As an example, consider the regex from Example 1 and the log line ℓ =

replacing VM \(VmId=t56er3, VmName=us-east-X-az09re4-vm . The split-matcher checks

that the prefix and the suffix of the regex are present in the log line and then runs the regex on

the line using the engine. However, for this log line, string matching is unable to filter the log line,

and we need to evaluate the regex on the engine. In the worst case, all the log lines may contain

the string literals that we want to prefilter, and thus, using the split-matcher may not be better

than using the engine directly. Therefore, we introduce a learning component to identify when

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:8 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

a split-match-based strategy is better than running the regex directly on the engine. Since the

learning step is an overhead, we employ a tunable knob to control the time spent in learning the

best strategy. We present our technique in more detail in the following sections.

3.1 Regex splitting
The splitting phase decomposes a regex𝑅 into an equivalent expression of the form: prefix 𝑆 suffix.
We refer to this form as the 3-way split when the decomposition has three parts (two string literals

and a regex component in the middle). The decomposition is done in a way so as to maximize the

length of the string literals. There are other possible decompositions of interest here. For instance,

one can decompose 𝑅 into prefix 𝑇 where 𝑇 ← 𝑆 suffix. This is a 2-way split. It may also

be possible to decompose 𝑆 recursively into 𝑆1 middle 𝑆2 to generate a 5-way split of the form

prefix 𝑆1 middle 𝑆2 suffix. The 5-way split is called so because there are 5 components in the

decomposition, three string literals (prefix, middle, and suffix) and two regex components (𝑆1
and 𝑆2) . As we will see later, a 3-way split is usually the preferred splitting method. In order to

understand why a 3-way split is often the method of choice, we need to understand the costs and

the associated benefits. For each string literal component in the decomposition, we need to scan

the log line to identify if the string literal is present. If the log line contains all the string literal

components, then the engine runs its regex matching on a substring extracted from the log line.

Assuming the fraction of log lines left after filtering through the string literals is small, the benefit of

doing containment checks is the fact that we could avoid running the regex matching on the engine

for a large fraction of the log lines. We translate this intuition into a cost model in Section 3.2.1.

In some cases, a 3-way split may have an empty prefix and/or suffix . In that case, we may need

to recursively decompose until we find more string literals. Therefore, we generate a full recursive

decomposition of the regex that extracts all string literals in the query. We call this the multi-way

split of the regex.

Example 3. Consider the regex shown in Example 1. A 3-way split of the regex will set the prefix as
replacing VM \(VmId=(and the suffix as)-vm . The middle component 𝑆 is [a-z0-9\-]+)
VmName=us-east-X-([a-z0-9]+ . In a 5-way split, 𝑆 is further split into 𝑆1 is [a-z0-9\-]+ , 𝑆2 is
[a-z0-9]+ , and middle is) VmName=us-east-X-(. Note that middle can no longer be split any
further. Therefore, a 5-way split is also the full recursive decomposition for the regex.

3.2 Split-Matcher
The split-matcher takes as input the 3-way split, the multi-way split decomposition generated by

the splitter, and the regex that the user is trying to match. It runs in three modes: direct, 3-way-split,
and multi-way-split. In the direct mode, the split-matcher takes the regex given by the user and

evaluates it on the underlying engine. Algorithm 1 shows the execution steps of the split-matcher. In

the 3-way-splitmode, for each log line, we first verify if the prefix and the suffix are both present
in the log line. If this is true, we extract the substring from the log line between the prefix and the
suffix. Then, we execute the regex 𝑠 , which is the regex component in the 3-way split of 𝑟 , on the

engine with the substring as the input. Similarly, in the multi-way-split mode, a generalization of

3-way-split mode, we verify if all string literals are present in the log line and then execute the

regex by extracting the substrings. Next, we create a cost model to characterize the behavior of

these split modes compared to the direct mode.

3.2.1 Cost Model. In this section, we show that the 3-way split is the best strategy for decomposing

a regex in most cases. Let |ℓ | + 𝑓 · |𝑠 | denote the cost of running a specialized string matching

algorithm on a given log line ℓ for a string 𝑠 , and 𝑓 is the multiplicative constant that captures

the overhead of processing string 𝑠 by a string matching algorithm. Let Θ(𝑟) denote a constant

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:9

Algorithm 1: Split-Matcher

Input :Log 𝐿, 3-way split of 𝑟 , multi-way split of 𝑟 ,

mode ∈ {direct, 3-way-split,multi-way-split}.
1 foreach 𝑙 ∈ 𝐿 do
2 if mode = direct then
3 execute 𝑟 on 𝑙 on the engine

4 return
5 if mode = 3-way-split then
6 parameterized-split-match(𝑘 = 2)

7 if mode = multi-way-split then
8 parameterized-split-match(𝑘 = # string literals in multi-way split)
9 procedure parameterized-split-match(k)

/* 𝑠𝑡𝑟𝑖 is 𝑖th string literal in the split used. Assume prefix/suffix is non-empty. */
10 𝑐𝑙𝑖𝑠𝑡 ← empty array , 𝑖 ← 0, 𝑐−1 ← −1
11 do
12 while 𝑖 < 𝑘 do
13 if 𝑐𝑖 ← 𝑙 .find(𝑠𝑡𝑟𝑖 , 𝑝𝑜𝑠 = 𝑐𝑖−1 + 1) then
14 𝑐𝑙𝑖𝑠𝑡 [𝑖] ← 𝑐𝑖

15 if 𝑖 = 0 then 𝑐−1 ← 𝑐0

16 𝑖 ← 𝑖 + 1
17 else
18 if 𝑖 = 0 then return
19 𝑖 ← 𝑖 − 1
20 foreach 𝑐 𝑗 ∈ 𝑐𝑙𝑖𝑠𝑡 [0 : −1] do

/* 𝑠 𝑗 is 𝑗 th regex in the split of 𝑟 . */
21 match 𝑠 𝑗 on substring 𝑙 .substr(𝑐 𝑗 + len(𝑠𝑡𝑟 𝑗), 𝑐 𝑗+1) using engine

22 if not matched 𝑖 ← 𝑗 + 1 and break
23 while input not exhausted

such that Θ(𝑟) · |ℓ | is the cost of executing a given regex 𝑟 using the engine. In Section 2.1, the

gap between running a string matching algorithm versus using a DFA to match is about 3×. Based
on this empirical observation, we are informally going to assume for the rest of the paper that

1 ≤ Θ(𝑟) ≤ 3. Let 𝑐 denote the average number of characters matched in a string literal and let

lsize be the average string literal size. Let 𝜎1, 𝜎2, . . . , 𝜎𝑘 denote the selectivity of the 𝑘 string literals

in the decomposition of 𝑟 over the input log and 𝜎 is the overall selectivity. Note that 𝑘 = 1 for

2-way split and 𝑘 = 2 for 3-way split. The cost of running the split-matcher on a log line ℓ is:

SMCost(𝑟, 𝑘) = |ℓ | +
𝑘∑︁
𝑖=1

𝑓 · (𝑐 · (1 − 𝜎𝑖) ·
𝑖−1∏
𝑗=1

𝜎 𝑗︸ ︷︷ ︸
part one

+
𝑖∏
𝑗=1

𝜎 𝑗 · lsize)︸ ︷︷ ︸
part two︸ ︷︷ ︸

string matching cost

+ 2 · 𝜎 ·
𝑘−1∑︁
𝑖=1

|ℓ ′𝑖 |︸ ︷︷ ︸
substring extraction cost

+Θ(𝑟) ·
𝑘−1∑︁
𝑖=1

|ℓ ′𝑖 | · 𝜎︸ ︷︷ ︸
running on engine︸ ︷︷ ︸

total regex evaluation cost

Here, ℓ ′𝑖 denotes the substring between some occurrence of the 𝑖th and the (𝑖 + 1)𝑡ℎ string

literal. The string matching cost is divided into two parts. In the first part, for each string literal, 𝑐

characters of the literal are matched in the log line on average. However, for the 𝑖th string literal,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:10 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

Table 1. Performance comparison of Split-Matcher implemented with RE2 on a production dataset.

Regexes

Run Time (s)

𝑘 = 1 𝑘 = 2 𝑘 = 4 𝑘 = 6 𝑘 > 6

A 2.03 1.99 2.27 2.21 2.22

B 2.03 1.99 2.27 2.21 2.22

C 2.10 2.04 2.30 2.24 2.25

D 2.00 1.94 2.22 2.16 2.20

E 1.84 1.80 2.05 2.00 2.00

F 2.09 2.03 2.32 2.24 2.26

G 2.08 2.02 2.31 2.24 2.26

H 2.40 1.99 2.18 2.08 1.99

we only perform matching if all previous 𝑖 − 1 literals also matched. This is accounted for by

the product of selectivities of the 𝑖 − 1 string literals. In the second part, since the previous 𝑖 − 1
literals matched, it means we performed (𝑖 − 1) · lsize letter matches too. The 𝑖th string literal is

also present in the log line with probability 𝜎𝑖 and thus contributes an additional lsize character
matches. The cost of extracting the substrings for executing on the engine is set as twice the sum of

their lengths since we need to read the substrings and create a copy. This is done only when the log

line has all the string literals we are looking for. The cost of running 𝑟 directly on the underlying

engine is: EngineCost(𝑟) = Θ(𝑟) · |ℓ |. Therefore, we would obtain a performance advantage only

when SMCost(𝑟, 𝑘) ≤ EngineCost(𝑟). Based on the analysis of our datasets, we fix lsize = |ℓ |/10,
𝑐 = |ℓ |/100, 𝜎1 = 𝜎2 = 0.3, and

∑
𝑖 |𝑙 ′𝑖 | = |𝑙 |/2. We set 𝑓 = 3 since every character match of string 𝑠

in ℓ requires two more operations (checking the character in 𝑠 with the log line and advancing the

pointer) besides reading. For 𝑘 = 1, SMCost(𝑟, 𝑘 = 1) ≈ 1.69|ℓ | and EngineCost(𝑟) = 2|ℓ |. However,
SMCost(𝑟, 𝑘 = 2) ≈ 1.51|ℓ |, which means that a 3-way split is better than a 2-way split.

Next, consider a multi-way split. In other words, the case when 𝑘 ≥ 3. In this case, the overall

selectivity 𝜎 does not change for most queries in our workloads and thus, the regex evaluation

cost term remains the same. We also observed that the substring extraction cost also remains

close to 2 · 𝜎 · |ℓ |/2 as there are few lines that contain repeated string literals. However, the string

match cost is strictly larger; thus, SMCost(𝑟, 𝑘 ≥ 3) > SMCost(𝑟, 𝑘 = 2). We note that there is one

scenario where a multi-way split is better than a 3-way split. If the 3-way split has a prefix-suffix
combination with low selectivity or either one of them is empty, then the split-matcher has a

lower cost for a multi-way split. Having string literal(s) with low selectivity means that the overall

selectivity is not high enough and a recursive decomposition is beneficial.

To validate our cost model, we use a production dataset and select 8 regexes that can be split

into more than 7 components. We compare their performance (trimmed average by removing the

slowest and fastest runs over 10 experimental runs) for varying values of 𝑘 , and show these results

in Table 1. The 3-way split (𝑘 = 2) approach has the best performance for all regexes. Both 𝑘 = 1

and 𝑘 ≥ 3 are more expensive, in line with the prediction from the cost model, by as much as 20%.

We provide further evidence for the validity of our informal cost model in Section 5.4.

3.3 Learner
Since we do not assume any statistics are available apriori, it is not possible to know which of the

direct mode or split-match mode is the better strategy. The goal of the learner is to identify an

efficient strategy on-the-fly. Given a regex 𝑟 in the workload𝑊 , let opt(𝑟) denote the optimal mode

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:11

for running it and let 𝑠 be a fixed decomposition of 𝑟 . Our goal is to minimize the overall regret,

𝑅𝑒𝑔𝑟𝑒𝑡 , in the online setting, by choosing a strategy (denoted by chosen(𝑟)) that is close to optimal.

Formally, we can define 𝑅𝑒𝑔𝑟𝑒𝑡 as follows:

𝑅𝑒𝑔𝑟𝑒𝑡 =
∑︁
𝑟 ∈𝑊

(
Cost

(
Split-Matcher(𝐿, 𝑠, chosen(𝑟))

)
− Cost

(
Split-Matcher(𝐿, 𝑠, opt(𝑟))

))2
Multi-armed bandits (MABs). The regret minimization problem in the above equation is a

multi-armed bandit [102] problem. An agent must maximize their reward (i.e., minimize regret) by

repeatedly selecting from a fixed number of arms. The agent first receives some information, and

must then select an arm. Each time an arm is selected, the agent receives a payout. The payout

of each arm is assumed to be independent given the contextual information. After receiving the

payout, the agent receives a new context and must select another arm. Each trial is considered

independent. In the case of BLARE, the arm is one of the three modes described in Section 3.2, and

the chosen arm in a particular iteration informs our choice about the next iteration. Over time, the

learning agent improves its selection and gets closer to choosing optimally (i.e., minimizing regret).

Doing so involves balancing exploration and exploitation: the agent must not always select a mode

randomly (as this would not help to improve the performance), nor must the agent blindly use the

mode that gives good performance initially, without exploring the other choices.

Thompson Sampling. One solution to the MAB regret minimization problem is Thompson sam-

pling [76]. Intuitively, Thompson sampling works by building up experience (i.e., past observations

of split-matcher mode choices and their performance). It models the reward for each arm choice

with a distribution over its possible values informed by the uncertainty in its estimate, as compared

to treating it as a point estimate. In other words, if one of the arms has a high reward but has not

been tried many times (i.e. the uncertainty is high), the distribution will flatten to account for this

fact. This technique promotes the exploration of other arms, rather than choosing the arm with the

highest reward all the time.

To model the rewards for each arm, we use a beta distribution 𝐵(𝛼, 𝛽). At the beginning of the
learning phase, 𝛼 = 𝛽 = 1 which leads to the priors being uniform distribution (modeling the fact

that we have no prior so any strategy is equally likely to be the best). After every iteration, 𝛼 or 𝛽 is

incremented depending on whether the chosen arm has been the arm with the maximum rewards

so far. Note that the learning procedure runs for a fixed number of iterations. At the end of the

learning phase, we pick the arm with the highest reward as the mode in which the split-matcher

must be run for the regex under consideration.

Ensemble Method. We measure the cost of a mode running a regex 𝑟 on a specific log line ℓ with

the actual running time. However, the measured data can be noisy, as the running time can be

impacted by factors like other running processes and system glitches. To avoid being affected by

noisy data and choosing the wrong mode, we employ ensemble learning, a well-known technique

to increase the robustness of the learner [99]. We begin by taking a random sample of the input log.

The learning component of BLARE then splits the measurement sample into 10 folds and generates

10 separate MABs. The majority vote of choices of arms among the 10 MABs is selected. We discuss

the accuracy of our ensembled MAB learner in Section 5.4.

4 DESIGN CONSIDERATIONS
There are several considerations that must be taken into account when designing an effective

solution for regex query evaluation. Continuing our discussion from Section 1, below we outline

some of these considerations that informed our design choices.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:12 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

4.1 Extensibility and Simplicity
One of the key choices we made was not to make changes to the code of underlying engine

as making changes to widely used libraries has the potential to introduce bugs and regressions.

Implementing BLARE as a standalone software artifact that uses the engine as a blackbox also

increases the chances of adoption since it is lightweight, easy to use, and modular. Further, this

choice also allows multiple engines to benefit instantly from our optimizations. The simplicity of our

techniques and a small codebase (< 1000 LOC) makes it easy to understand and aids explainability.

4.2 Minimize Learning Overhead
Keeping the learning overhead low is also important. The learning overhead increases linearly

in the number of different modes that we can choose from. Therefore, we deliberately keep the

number of modes in BLARE to be small (three). Note that BLARE is easily extensible by adding

other evaluation strategies. One possible improvement is to choose the optimal order of prefix
and suffix matching on the log line. We revisit this point in Section 5.5.2. We also minimize the

learning overhead by early stopping the MAB. In our setting, we want to find out which arm is

generally better rather than finding the actual distribution of lines that runs faster with the three

arms. MAB in BLARE will stop as soon as one arm achieves at least half of the total iteration number

of wins. This mechanism allows BLARE to drop out of the learning stage and proceed to use the

chosen strategy earlier.

4.3 Prefix and Suffix Sizes
The selectivities of the prefix and the suffix strings play a critical role in determining which mode

of execution is chosen by the learner. It is not uncommon to have a single character suffix in regex

queries (such as ending with a dot). Such suffixes have low selectivity and the split-match mode

does not offer any benefit in this case. However, highly selective characters (and words starting

with them) such as the character z filter out a large fraction of the log. Therefore, string literal sizes

are not always a reliable indicator of selectivity information. Instead of estimating the selectivity of

string literal(s) (a hard problem), we simply let the learner component determine the best strategy

by comparing the three different execution modes. For regexes that do not contain a prefix and/or

suffix, multi-way splitting performs much better.

5 EVALUATION
We implemented BLARE on top of four state-of-art regular expression libraries that are used in log

analytics: Google’s RE2, PCRE2, Boost Regex, and ICU Regex. ICU Regex (Regex component of

International Components for Unicode) is the regex engine used in MySQL [72] and Boost Regex
is the underlying engine used for regex evaluation in Lucene++ [58], a C++ migration of Java-

based search engine Lucene [84]. Boost Regex has also been part of C++ standard library since

C++11 [78]. We then used these implementations to evaluate the impact of BLARE. In particular,

we seek to answer the following questions:

Q.1 What is the performance improvement with BLARE (cf. Section 5.2)?

Q.2 What is the overhead of using the multi-armed bandit (MAB) approach (cf. Section 5.3)?

Q.3 How does the performance of the 3-way split compare with the multi-way split strategy (cf.

Section 5.4)?

Q.4 Does BLARE offer any performance improvement for other regex queries (such as counting

matches and finding the longest match) and is BLARE extensible to incorporate more fine-

grained splitting strategies (cf. Section 5.5)?

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:13

RE2 3-Way
Split

Multi-Way
Split

BLARE
0

250

500

750

1000

To
ta

l R
un

ni
ng

 T
im

e
(s

) baseline

1.4×

3.6× 3.7×

(a) Overall running time

10 1002 4 6 8 20 40 60 80 200 400 600
Per Regex Running Time (s) in Log Scale

BLARE

Multi-
Way
Split

3-Way
Split

RE2

(b) Distribution of per regex running time

Fig. 3. BLARE vs. Multi-way split vs. 3-way split vs. RE2 on DB-X Workload

RE2 3-Way
Split

Multi-Way
Split

BLARE
0

500

1000

1500

To
ta

l R
un

ni
ng

 T
im

e
(s

) baseline

3.5× 3.3× 3.3×

(a) Overall running time

10020 40 60 80 200 400 600
Per Regex Running Time (s) in Log Scale

BLARE

Multi-
Way
Split

3-Way
Split

RE2

(b) Distribution of per regex running time

Fig. 4. BLARE vs. Multi-way split vs. 3-way split vs. RE2 on System-Y Workload

RE2 3-Way
Split

Multi-Way
Split

BLARE
0

1

2

3

4

To
ta

l R
un

ni
ng

 T
im

e
(s

)

baseline

0.4×

1.9× 1.6×

(a) Overall running time

0.1 10.2 0.4 0.6 0.8 2
Per Regex Running Time (s) in Log Scale

BLARE

Multi-
Way
Split

3-Way
Split

RE2

(b) Distribution of per regex running time

Fig. 5. BLARE vs. Multi-way split vs. 3-way split vs. RE2 on US-Accident Workload

5.1 Experiment Setup
For our evaluation we use an Azure Standard_E32-16ds_v5 machine with Intel(R) Xeon(R) Platinum

8370C CPU @ 2.80GHz with 16 vCPUs, 256 GB memory, and 1 TB hard disk. Our experiment code

is written in C++17 and compiled with the -O3 flag. We use a C++ wrapper, JPCRE2 [35] version

10.32.01, for PCRE2 version 10.40, with JIT compilation on and the latest (09-20-2022) version of RE2.
We used the official C/C++ version of ICU library, ICU4C version 72.1 and Boost library version

1.65.1.0ubuntu1.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:14 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

Table 2. Statistical information of literal components of regexes in DB-X, System-Y, and US-Accident

workload DB-X System-Y US-Accident

literal per regex

mean 3.2 1.4 1.8

median 3 1 2

mean # char of

prefix 33.1 14.5 4.7

suffix 72.8 3.9 0

literal 39.9 12.2 5.1

regex with

only prefix 3 11 3

only suffix 5 0 0

both 123 7 0

none 1 0 1

For simplicity, experiments are run in a single-threaded mode. In the experiments, we first load

the full set of regexes and dataset into main memory as an array of strings, then match each regex

query in the workload on the full array. Unless stated otherwise, we extract the first match of each

regex query on each log line throughout Section 5.2 to Section 5.4. We present experimental results

of other types of queries in Section 5.5. The captured substring in each log line is stored in a local

variable. For each regex, we timed the duration of the matching from the first log line to the last log

line for the workload under consideration. We run the matching process 10 times, and record the

trimmed mean by removing the maximum and minimum running time for each method. For each

workload, we report the running time of a specific method by summing over the trimmed mean

running time of all the regexes. In the figures that follow we use this trimmed mean sum to report

the average workload times in bar charts with speedup numbers. To better understand the running

time of the individual queries in each workload, we show the distribution of the individual query

run times (by using the trimmed mean of each query) as a box plot. For the learning component

in BLARE, we fix the sample size of each run to be 0.001% of the log. We ensure that the sample

always has at least 200 lines for learning.

5.1.1 Workloads. We use the following 3 real-world datasets and their corresponding query work-

loads for our experiments. Two of the datasets contain logs generated by production database

systems while the third dataset is text based. The detailed statistical information of literal compo-

nents in regexes in each workload can be found in Table 2.

DB-X.We obtained a production dataset from a large cloud provider containing 101,876,733 log

lines generated by DB-X with a file size of 13.5 GB and 8, 941 regexes used in log analyzing tasks by

data scientists, engineers, customer support, etc. We randomly sampled 132 regexes and evaluate

those on the logs to create this workload, which we call DB-X. The average log line length in this

workload is 138.5 characters. Regexes in this workload have large number of literal characters, with

an average of 105 characters per regex and 39.9 characters per literal component. The majority of

the regex queries have both a prefix and a suffix.

System-Y. This is a production dataset containing 890, 623, 051 log lines generated by System-Y,

a popular data exploration tool used in the industry. The size of this dataset is 100 GB, and the

workload has 18 regexes used for analysis tasks by data scientists. The average log line length

is 116.2 characters. This workload contains regexes with smaller-sized literal components and

fewer literal components per regex compared to DB-X. 11 of the regexes have at least 2 literal
components and 7 have only prefixes.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:15

US-Accident. This is an open-source dataset collected by Moosavi et al. [68]. This dataset contains

2, 845, 343 records of traffic accidents in the United States from February 2016 to March 2019 in a file

of size 1.08 GB. We used the accident description strings in the dataset and the 4 regexes presented

in their paper. The average line length is 66.6 characters. Regular expressions in this workload have

the least number of literal characters across all workloads; three of them contain only prefixes, and

one has no prefix or suffix.

5.1.2 Methodology. We compare the running time of BLARE with the three modes of Split-Matcher

individually; i.e., we hard code the executionmode to a fixed value (direct, 3-way-split,multi-way-split)
for every query in the workload. We record the overall execution time of the workload and collect

execution metrics to construct the box plots. We also record the execution time for each regex to

observe changes in running time for different strategies.

5.2 Performance of BLARE
In this section, we answer Q.1 by evaluating BLARE on each of the four engines.

RE2 Performance. Figures 3a, 4a, and 5a show that for each of the three workloads described

above, BLARE on top of RE2 improves the performance compared to direct execution on RE2. BLARE
significantly reduces the running time of log analysis for the DB-X and the System-Y workloads,

with a 3.7× reduction for the DB-X workload and a 3.3× reduction for the System-Y workload.

For the US-Accident workload, which benefits from structural decomposition in BLARE but has

generally shorter literal components, our framework still reduces the overall running time by 1.6×.
For the DB-X and the US-Accident workloads, 3-way split is significantly slower than multi-way

split. There is one regex in each of the two workloads without a prefix and a suffix, so the 3-way
split falls back to using direct RE2 execution for this query. Two regex in each workload also have

a string literal with low selectivity, which means the 3-way split is ineffective in reducing the

number of log lines that need to be examined. However, each of these regexes happens to have a

highly selective literal component in the middle and thus evaluation is faster using the multi-way

split mode. For the System-Y workload, the 3-way split approach is only marginally faster than

multi-way split, as a majority of the queries have a highly selective prefix and/or suffix. There
exists one regex whose prefix and suffix have low selectivity, but it also has no string literal

anywhere else, which renders the multi-way split mode ineffective. For all three workloads, BLARE
is either the best strategy or close to the best, thanks to its learning component.

The results of the per-regex running time distribution are presented in Figures 3b, 4b, and 5b.

For the DB-X workload, RE2 takes around 7 seconds for most queries, and BLARE can reduce the

execution time by 2 − 3×. The regexes benefiting the most have long literal prefixes and/or literal

suffixes and can take advantage of the structural decomposition in BLARE. Every query in the

workload benefits from BLARE, and the RE2 direct execution is never chosen as the strategy by

the learner. This is not surprising since performing string matching leads to a drastic reduction

in the number of log lines that need to be examined. At this point, the reader may wonder about

what mode is chosen by BLARE for the Split-Matcher for each query and whether there is any

deeper insight into when it chooses one mode over the other. We defer the discussion of the choice

between the 3-way-split and the multi-way-split mode for different regex queries to Section 5.4.

Figure 4b shows the distribution of execution time for different strategies. Once again, the learner

does not choose direct mode as the choice for any of the regexes. Every query in the workload

benefits from BLARE. In this workload, we found a regex query that takes ∼100 seconds using

BLARE and ∼600 seconds using RE2. This regex has very short string literal components and a large

number of matches in the dataset, and therefore takes more time to process compared to other

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:16 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

regexes. However, even with short string literals, BLARE effectively reduces the number of log lines

that need to be examined further, and thus increases the performance by 6×.
Finally, Figure 5b shows the distribution for the US-Accident workload. Every query in the

workload benefits from BLARE.

PCRE2 Performance. We found that in some cases PCRE2 is significantly slower compared to RE2.
Specifically, it took upwards of over 90,000 seconds to execute the full DB-X workload (which

is over 80× slower compared to the time it took for vanilla RE2 to run this workload). To keep

the experiments manageable, and to study the impact of BLARE on PCRE2, we generated a smaller

version of this production workload. We derived a new workload, calledDB-X-Small, that contains
13 regexes from the DB-X workload. The selection of the queries was done manually to include

regexes with varying lengths, selectivities, and literal components. In particular, the min and max

regex length was 41 and 274. Each regex contained at least one recursive component (as defined

in [21]) and the maximum number of recursive components in a regex was 5. The other two

workloads, namely System-Y and the US-Accident, ran in a reasonable time with PCRE2 and we use

them as is.

Tables 3, 4, and 5 show that for all the workloads, BLARE on PCRE2 improves the performance

compared to PCRE2 alone. BLARE reduces the running time of DB-X-Small by 3.2×. Table 3 shows
the distribution of the queries for the DB-X-Small workload. Similar to RE2, BLARE never chooses

Table 3. Performance comparison of BLARE vs. PCRE2 on the DB-X-Small Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

PCRE2 6.6 7.0 7.2 7.3 10.9 96.8

BLARE 2.1 2.1 2.2 2.3 3.8 30.3

BLARE Improvement: 3.2×

Table 4. Performance comparison of BLARE vs. PCRE2 on the System-Y Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

PCRE2 58.8 62.5 65.6 73.6 289.2 1582.2

BLARE 16.0 18.6 20.8 36.0 59.4 503.9

BLARE Improvement: 3.1×

Table 5. Performance comparison of BLARE vs. PCRE2 on the US-Accident Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

PCRE2 0.3 0.8 2.0 54.2 207.4 211.8

BLARE 0.1 0.2 0.3 0.4 0.5 1.3

BLARE Improvement: 168.3×

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:17

Table 6. Performance comparison of BLARE vs. Boost Regex on the DB-X Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

Boost 13.1 14.2 14.8 15.2 58.3 2164.0

BLARE 1.4 1.7 1.9 1.9 10.1 273.9

BLARE Improvement: 7.9×

Table 7. Performance comparison of BLARE vs. Boost Regex on the System-Y Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

Boost 109.0 111.0 118.5 123.3 191.5 2290.7

BLARE 15.6 17.9 19.6 33.6 51.3 465.7

BLARE Improvement: 4.9×

Table 8. Performance comparison of BLARE vs. Boost Regex on the US-Accident Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

Boost 0.3 0.4 0.8 1.4 2.0 4.0

BLARE 0.1 0.2 0.3 0.4 0.5 1.2

BLARE Improvement: 3.4×

direct execution on PCRE2 as a winning strategy and every query in the workload experiences a

performance improvement when using BLARE. For almost all the queries, a 3-way split approach is

the best strategy and BLARE is able to predict it correctly. The performance for System-Y is improved

by 3.1×, and every query is faster compared to direct PCRE2.
Table 5 shows the distribution for the US-Accident workload. Every query in the workload

benefits from BLARE. One of the regex has no prefix or suffix, and it takes 200 seconds on PCRE2
but runs in 0.3 seconds using BLARE. This regex begins with (.+) and we observed that PCRE2
performance is slow for other queries starting with this expression in other workloads as well.

Similar to the case for RE2, regexes in US-Accident workload cannot take full advantage of BLARE
as they have short literal components. However, they still benefit from structural decomposition in

BLARE, and our framework reduces the overall running time by ∼ 168×.
Boost Regex Performance. Direct execution of Boost Regex has similar performance on the

DB-X workload compared to RE2 but is much slower than RE2 for the System-Y and US-Accident

workloads, as shown in Tables 6, 7, and 8. BLARE reduces the running time of the DB-X workload

by 7.9×, making it faster than BLARE-RE2 on the same workload. It reduces the running time of

the System-Y and US-Accident workloads by 4.9× and 3.4× respectively. Once again, BLARE never

chooses direct execution on Boost Regex as a strategy and every query in the workload experiences
a performance improvement when using BLARE.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:18 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

ICU Regex Performance. ICU Regex has a large running time for some regexes in the DB-X

workloads. Therefore, we run DB-X-Small workload on ICU Regex and BLARE. From Table 9, we

can see that direct execution of ICU Regex and BLARE-ICU Regex have longer running time on

DB-X-Small workload, compared to PCRE2. BLARE manages to shorten the running time by 1.6×.
Every query in this workload gets a performance improvement with BLARE. Table 10 shows the
distribution for the US-Accident workload. Every query in the workload benefits from BLARE.
One regex takes 167 seconds to run with ICU Regex, but runs in 0.4 seconds using BLARE. The
US-Accident workload benefits from the structural decomposition component in BLARE and our

framework reduces the overall running time by ∼ 62×. We note that ICU Regex accepts ICU

Unicode strings which are UTF-16 encoded and have a higher space requirement. For this reason,

the System-Y dataset cannot fit in memory. Interestingly, for the DB-X-Small workload, we found

that the direct execution on ICU Regex for 4 regexes out of the 13 was the faster strategy (by up to

46% for one regex). In each case, BLARE identified the best strategy correctly.

Table 9. Performance comparison of BLARE vs. ICU Regex on the DB-X-Small Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

ICU 4.0 6.3 8.2 12.7 20.1 127.7

BLARE 4.1 4.9 6.4 7.8 8.1 81.5

BLARE Improvement: 1.6×

Table 10. Performance comparison of BLARE vs. ICU Regex on the US-Accident Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

ICU 0.3 0.7 1.7 43.9 167.4 171.2

BLARE 0.2 0.2 0.3 0.6 1.5 2.3

BLARE Improvement: 61.7×

Table 11. Mean percentage of time spent on the learner of BLARE for RE2, PCRE2, Boost Regex, and ICU
Regex. × denotes that the underlying engine could not finish running in reasonable time or the test machine
could not fit the dataset in memory.

BLARE-RE2 BLARE-PCRE2 BLARE-Boost Regex BLARE-ICU Regex

DB-X-Small 4.2% 2.8% 5.6% 8.1%

DB-X 5.1% × 6.1% ×
System-Y 6.7% 9.1% 10.7% ×
US-Accident 16.5% 23.8% 27.4% 28.1%

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:19

5.3 Multi-Armed Bandit Overhead
This section is dedicated to answering Q.2 by examining the overhead of using the multi-armed

bandit method. Table 11 shows the average overhead that the learning component introduces in

the total running time across all queries in each workload over the strategy chosen by BLARE.
For BLARE-RE2, the average overhead is below 7% for DB-X, DB-X-Small, and System-Y, and

2.8% (9.1%) for BLARE-PCRE2 on the DB-X-Small (System-Y) workload. BLARE-Boost Regex has a
higher overhead percentage of 10.7% on the System-Y workload, and its average overhead on the

DB-X and the DB-X-Small workload is below 7%. Considering the average overhead of 8.1% for

BLARE-ICU Regex on the DB-X-Small workload, the average overhead of BLARE learner on the two

production datasets is less than 11%. We observed that for most queries, the overhead is close to

the mean.

For the US-Accident workload, the overhead is higher. Recall that by default, we use 0.001% of

the dataset as a random sample for learning. However, for the US-Accident dataset, this fraction

yields a sample size of only 28 lines which is too small for learning. Since we ensure that the sample

should have at least 200 lines, we generate a sample of size 200 (a 10× increase in the sample size

compared to the sample size used in other datasets). This leads to a proportionally higher cost of

learning. Nevertheless, the improvement from BLARE is more than enough to compensate for the

relatively higher learning cost compared to running it directly with the base regex libraries.

5.4 Comparing 3-way and Multi-way Split
In this section, we answer Q.3 by comparing the performance of the 3-way split strategy with the

multi-way split strategy. Recall that for multi-way split, we decompose the regex into as many

components as possible.

RE2 Performance. We first turn our attention to RE2 on the DB-X workload. Figure 3a shows that

BLARE obtains the best performance, followed by the multi-way split strategy, and then the 3-way

split strategy. We dived deeper to understand which queries ran using multi-way split in BLARE
and which queries chose 3-way split. We found that out of the 132 queries, only 10 queries got a

performance improvement using the multi-way split approach, and BLARE’s learner correctly picks

the multi-way split mode for all 10 queries. Three of the regexes have non-existent prefix. Two of

these regexes have a dot as a suffix and one regex has no suffix. Three regexes have long prefix
and a dot (which has very low selectivity) as a suffix and the remaining five have either a prefix
or a suffix, but not both. Each of these cases likely leads to a low overall selectivity and performing

multi-way split aids in increasing the selectivity. The query with the largest improvement (over

15×) was: (.+) is not supported on (.+)\. . Observe that this query has an empty prefix
and the suffix is a dot, a character with low selectivity. Performing a multi-way split allows for

generating at least one more literal component that increases the overall selectivity. This is in line

with our cost model presented in Section 3.2.1, which tells us that the overall selectivity of the

string literals must be high in order to get a low Split-Match algorithm cost. For the remaining 126

queries in the workload, a 3-way split was faster by 15% (on average), as can be seen from Figure 3b.

The cluster of queries for multi-way split has a larger running time (most queries have a running

time between 7 to 10 seconds) than the cluster of queries for BLARE and the 3-way split (most

queries have a run time between 2 to 7 seconds).

For the System-Y workload, Figure 4a shows that multi-way split is marginally slower than 3-way

split. A closer examination of the running time for each regex shows that nearly all of the queries

experience a slowdown. This is expected since most of the regex in the System-Y workload have a

prefix and/or suffix already. Further decomposition of the regex to generate additional string

literal components leads to a higher string-matching cost. Figure 5a shows that in the US-Accident

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:20 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

workload, the multi-way split strategy obtains the best performance, followed by BLARE, and then

the 3-way split strategy. In the US-Accident workload, one of the regexes has a non-existent prefix
and suffix, and two of three regexes each contains a prefix with low selectivity. However, all

three of these regexes have literal components in the middle that can further reduce the number of

invocations of the underlying engine, and thus evaluation is faster when using the multi-way-split.

PCRE2 Performance. For the DB-X-Small workload, we observed that the multi-way split method

had an average slowdown of about 8% compared to the 3-way split method and the largest slowdown

across all queries was 11%. Multi-way split achieves comparable performance on only one query in

the workload against 3-way split and is slower than the 3-way split for all queries in System-Y for

PCRE2. The behavior of the US-Accident workload using PCRE2 was similar to RE2.

Boost Regex Performance. We observed that 5 out of the 132 queries in the DB-X workload see

better performance when running in multi-way split mode than the 3-way split mode. Among

them, two queries have close running times (difference less than 3%) using the two methods. Two

other queries, one with no prefix or suffix components and one with no prefix and dot as the

suffix, experience a performance improvement of 10× and 12× respectively using the multi-way

split. For the remainder of the 128 queries, a 3-way split approach is faster than the multi-way split

approach by 3% to 50%, with an average improvement of 14%. The multi-way split approach is 12%

slower on average than the 3-way split in System-Y. The behavior of the US-Accident workload

using Boost Regex was similar to RE2.

RE2 Reversed
3-Way
Split

3-Way
Split

Multi-
Way
Split

BLARE
0

200

400

600

800

1000

1200

To
ta

l R
un

ni
ng

 T
im

e
(s

) baseline

2.3×
3.3× 3.6× 4.1×

(a) Overall running time

1 100.6 0.8 2 3 4 5 6 7 8 9 20 30 40 5060
Per Regex Running Time (s) in Log Scale

BLARE

Multi-
Way
Split

3-Way
Split

Reversed
3-Way

Split

RE2

(b) Distribution of per regex running time

Fig. 6. BLARE vs. multi-way-split vs. 3-way-split vs. Reversed 3-way-split vs. RE2 on the DB-X Workload.

ICU RegexPerformance. There are 3 queries out of the total 13 queries in the DB-X-Small workload

that benefit from the multi-way split. Two of them have a negligible performance difference between

the two methods (1.6% and 3.6%). One of the queries has prefix as Database and . as a

suffix. Even though the selectivity of . is low, a more selective middle component improves its

performance by 7% using the multi-way split. On average, a 3-way split is faster than a multi-way

split by 6%. The behavior of the US-Accident workload using ICU Regex was similar to RE2.
Overall, we observe that all findings are consistent with the cost model introduced in Section 3.2.1

which recommends using a 3-way split if prefix and the suffix is non-empty.

5.5 Discussion
In this section, we answer both questions raised inQ.4. Recall in this question wewant to understand
if BLARE offers any performance improvement for other regex queries (such as count and longest

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:21

Table 12. Performance comparison of Longest_Match BLARE vs. RE2 on the DB-X Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

RE2 7.0 7.4 7.6 7.7 26.8 1128.5

BLARE 1.6 1.9 2.1 2.1 11.1 306.1

BLARE Improvement: 3.7×

Table 13. Performance comparison of Count_All BLARE vs. RE2 on the DB-X Workload.

Method

Per Regex Running Time (s) Total

Time (s)
min Q1 median Q3 max

RE2 7.2 7.6 7.7 7.8 27.0 1148.7

BLARE 1.5 1.8 1.9 2.0 10.6 299.8

BLARE Improvement: 3.8×

match) and whether BLARE is extensible. We begin by examining other regex queries of interest,

followed by examining the extensibility aspect.

5.5.1 Other RegexQueries. So far, all of our experiments are performed in the setting where the

regex queries extract the matched input (via capturing groups) from the dataset. In this section, we

report the experimental results for BLARE on other regex queries of interest. The first query we

consider is the longest_match. A longest match query finds all possible matches of a regex and then

returns the longest one of them, a useful operation used in regex disambiguation [29, 88]. Table 12

shows the results for the longest match query on RE2. We observe that BLARE is effective in this

setting as well. BLARE delivers a 3.7× improvement over the direct execution of the workload on

RE2 for DB-X. The second query of interest, count_all, counts the total number of matches in the

input, an operation that is frequently used in practice [70]. Table 13 shows the results for this query,

and shows that for BLARE using RE2 on the DB-X workload, we get a 3.8× improvement in running

time over direct execution.

5.5.2 Extensibility. Our final evaluation in this section demonstrates the benefit of our framework

with respect to extensibility (required by the desiderata (R.2)). Specifically, we modify the learning

component in BLARE to include another strategy to understand how easy it is to make the change

and how BLARE responds to the new strategy. By default, the prefix and suffix in the 3-way split

are searched in the log line in that specific order. However, one can also do the string match in

the opposite order without affecting the correctness. If the suffix happens to be more selective

than the prefix, we expect the second strategy to win. Therefore, we extend the multi-armed

bandit component in the framework to include another arm. After this change, the split-matcher

has to choose from four modes instead of three. Figure 6a shows the result of this modified BLARE
approach on the DB-X workload (the distribution of the runtimes is shown in Figure 6b). We

observe that this new strategy is the best among all the choices for 52 out of the 132 queries in

the workload and the largest performance gain for a regex was 3.5× over the previous best when

BLARE had only three modes to choose from. Note that using the reversed 3-way split always was

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:22 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

the next worst strategy after direct execution on RE2. Fortunately for BLARE, we are able to get the

best of all the arms owing to its learning component.

6 RELATEDWORK
Regular expression query evaluation has been intensively studied, both theoretically and practi-

cally, over five decades across many communities, including Systems, PL, Security, Data Mining,

and Networking. It has widespread applications ranging from pattern matching [44], intrusion

detection [50, 2], data validation and repair [52], data discovery [75], code search [23, 77], etc.

(see [94] for a detailed survey). Architectures for regex evaluation at line rate are based on either

DFAs or NFAs. For both of these solutions, there is a wide body of work that has looked at state-

minimization algorithms [50, 9], alphabet reduction [14, 9, 48, 8], and the so-called increased stride

where multiple characters are consumed per state transition [97, 39, 69, 14]. A different line of

work has explored improving regex performance by using modern hardware such as programmable

switches [91], FPGA [101, 5, 66], GPUs [43, 89], and network processors [54, 41], and optimized

pipelined infrastructure [31, 59, 10, 98].

Since most practical systems are DFA-based, a large number of studies have been proposed in

recent years to optimize DFA-based pattern matching. The core goal is to minimize the memory

footprint while guaranteeing high performance. Some of these works [86, 7, 90] leverage bitmap

indexes to eliminate certain transitions and minimize memory usage. Other works have focused on

rewriting the regex to make it similar by replacing chain of transitions into a single transition [50,

3], or use default transitions to reduce redundancy [4, 53]. There is also considerable work on

efficient pattern matching techniques such as partitioning the regex rules [55, 87], and variants

of automata tailored to specific scenarios [49, 95]. Recent work [73] has also made progress in

developing domain-specific programmable engines that define a novel instruction set and compiler

framework to translate regex into a program that is amenable to exploiting parallel hardware.

Within the database community, regex evaluation on FPGA and modern architectures [67, 80, 81],

building indexes for regex evaluation [18, 30], and its deep connections to XML data management

solutions [61, 56, 15] have been intensively studied. The related problem of regex evaluation over

labeled graphs has a rich history within the database community [26, 16, 28, 27, 93]. We also refer

the reader to recent work by Martens et al. [62, 63, 60] that describes the theoretical aspects and

real-world behavior of evaluating regular path queries in graphs. Regex and its augmented versions

have also found applications in searching patterns in visualizations [79]. Prior work [36, 82, 83]

has also studied the related problem of declarative querying of biological datasets. These solutions

develop novel algebraic frameworks that are geared towards pattern extraction and exploit the

special properties of biological datasets (such as genomic data, protein data, etc.). Similar to our

approach, prior work [47] has also made the case for using string-matching based ideas for faster

XML parsing. Prior work has also proposed using DFAs [33] and NFAs [24, 25] in conjunction with

multi-query optimization techniques for XPath matching over XML documents and streams. Several

works have also looked at the related but orthogonal problem of using indexes for speeding up

regular expression matching. To this end, [85] proposed identifying strings that can be used as keys

to index records. Li et al. [51] proposed a novel indexing structure to answer long regex path queries

over XML data. Creating indexes over multigrams has also shown performance improvements [20].

Indexing-based approaches are also heavily used when querying over biological datasets [40, 96, 13,

100, 64]. The indexes support not only exact matches but also approximate matches and similarity

based on distance metrics. However, most of the works related to indexing assume knowledge of

the workload (both [85] and [20] explicitly note this). Most of these approaches advocate for a

preprocessing phase that allows for workload-aware index creation whereas in this paper, we do

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

Exploiting Structure in Regular ExpressionQueries 152:23

not make any specific assumptions about the workload and the data. We leave the study of building

indexes (either in the preprocessing phase or on-the-fly) for BLARE as a problem for future work.

Besides RE2, PCRE, and its successor PCRE2, Boost Regex, and ICU Regex, several real-world
systems boast of many innovative performance improvements. Snort [22] and Suricata [71], two

state-of-the-art intrusion detection systems, use pattern matching as a lightweight prefiltering

mechanism. SplitScreen [17], a malware detection system, makes extensive use of Bloom filters to

perform a signature-based detection of a regex match. Intel’s Hyperscan [92] extends the prefiltering

technique from RE2 (described in Section 2) and applies the idea to the entire query. Specifically, all

string literal components in the query are matched outside the finite automata and the regex part

that occurs just after the string is executed only if the preceding string component matches. This

process is done in a left-to-right linear fashion. Hyperscan focuses extensively on using graph-based

techniques to identify the dominating patterns in the query and uses SIMD-accelerators for fast

pattern matching. Our setting departs from the use cases of Hyperscan in several aspects. First,

regexes used in log analysis are often simpler and do not contain nested sub-expressions. This

eliminates the need for doing Hyperscan’s NFA analysis of the query to find repeated patterns of

string components. Second, Hyperscan executes the automata next to a string literal immediately if

the string literal matches. In contrast, our prefiltering first scans the input for all string literals and

only then evaluates the regex. Thirdly, it is important to make sure that no query in the workload

suffers from performance degradation. Therefore, we need to explore some form of learning-based

strategies as well to ensure we don’t introduce regressions. Finally, our techniques are more broadly

applicable and do not make any assumptions on the available hardware. Prefiltering-based ideas

have also been applied to other parts of the regex. One such example is using range hashes [6],

where the range of characters (e.g., presence of [a-z] , \d , etc. is checked by using FPGAs).

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented BLARE, a novel, lightweight, extensible framework that accelerates

regex query evaluation for log analytics. BLARE improves performance by considering a regex

as a query composed of fixed strings and core regular expression components. It then uses an

execution approach that is inspired by query processing/optimization strategies in database systems.

Specifically, we proposed a multi-armed bandit method to selectively move some computation out

of the automata machinery to a faster string-matching component. BLARE runs on top of any regex

engine since it uses the engine in a blackbox fashion. We also presented experimental results that

demonstrate significant performance improvements across all workloads that we tested on, and for

four popular regex libraries, namely RE2, PCRE2, Boost Regex, and ICU Regex.
We view this paper as a starting point in a line of work that brings the benefits of decades of

database research to log analytics. In particular, we envision building a regex evaluation engine

that features more operators such as specialized string matching algorithms, a non-trivial query

plan space, specialized indexes, and using a catalog that collects statistics about the queries and the

input data. Multi-query optimization is another area that can bring significant improvements, as

sometimes log queries are presented in a batch that can be processed concurrently. It would also

be interesting to examine how our work can help in speeding up JSON schema containment [34]

where regexes with many literals are a bottleneck.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Foundation (NSF) under grant OAC-

1835446.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

152:24 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

REFERENCES
[1] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient string matching: an aid to bibliographic search. Commun.

ACM, 18, 6, (June 1975), 333–340. doi: 10.1145/360825.360855.

[2] Monther Aldwairi and Duaa Alansari. 2011. Exscind: fast pattern matching for intrusion detection using exclusion

and inclusion filters. In 2011 7th International Conference on Next Generation Web Services Practices. IEEE. (Oct. 2011),
24–30. doi: 10.1109/nwesp.2011.6088148.

[3] Rafael Antonello, Stenio Fernandes, Djamel Sadok, Judith Kelner, and Géza Szabo. 2012. Deterministic finite

automaton for scalable traffic identification: the power of compressing by range. In 2012 IEEE Network Operations
and Management Symposium. IEEE. (Apr. 2012), 155–162. doi: 10.1109/noms.2012.6211894.

[4] Rafael Antonello, Stenio Fernandes, Djamel Sadok, Judith Kelner, and Géza Szabó. 2015. Design and optimizations

for efficient regular expression matching in dpi systems. Computer Communications, 61, (May 2015), 103–120. doi:

10.1016/j.comcom.2014.12.011.

[5] Zachary K Baker and Viktor K Prasanna. 2004. Time and area efficient pattern matching on fpgas. In Proceedings of
the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays. ACM, (Feb. 2004), 223–232.

doi: 10.1145/968280.968312.

[6] Masanori Bando, N Sertac Artan, Rihua Wei, Xiangyi Guo, and H Jonathan Chao. 2010. Range hash for regu-

lar expression pre-filtering. In Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. (Oct. 2010), 1–12. doi: 10.1145/1872007.1872032.

[7] Michela Becchi and Srihari Cadambi. 2007. Memory-efficient regular expression search using state merging. In

IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications. IEEE, 1064–1072. doi:
10.1109/infcom.2007.128.

[8] Michela Becchi and Patrick Crowley. 2013. A-dfa: a time-and space-efficient dfa compression algorithm for fast

regular expression evaluation. ACM Transactions on Architecture and Code Optimization (TACO), 10, 1, (Apr. 2013),
1–26. doi: 10.1145/2445572.2445576.

[9] Michela Becchi and Patrick Crowley. 2007. An improved algorithm to accelerate regular expression evaluation. In

Proceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and communications systems, 145–154.
doi: 10.1145/1323548.1323573.

[10] Michela Becchi, Charlie Wiseman, and Patrick Crowley. 2009. Evaluating regular expression matching engines

on network and general purpose processors. In Proceedings of the 5th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems. (Oct. 2009), 30–39. doi: 10.1145/1882486.1882495.

[11] 2022. 8.5.7 ‘posix-basic’ regular expression syntax. Retrieved October 7, 2022 from https://www.gnu.org/software/f

indutils/manual/html_node/find_html/posix_002dbasic-regular-expression-syntax.html.

[12] Robert S Boyer and J Strother Moore. 1977. A fast string searching algorithm. Communications of the ACM, 20, 10,

(Oct. 1977), 762–772. doi: 10.1145/359842.359859.

[13] Tolga Bozkaya and Meral Ozsoyoglu. 1997. Distance-based indexing for high-dimensional metric spaces. In Proceed-
ings of the 1997 ACM SIGMOD international conference on Management of data, 357–368. doi: 10.1145/253260.253345.

[14] Benjamin C Brodie, David E Taylor, and Ron K Cytron. 2006. A scalable architecture for high-throughput regular-

expression pattern matching. ACM SIGARCH computer architecture news, 34, 2, 191–202. doi: 10.1109/isca.2006.7.
[15] Anne Brüggemann-Klein and DerickWood. 1998. One-unambiguous regular languages. Information and computation,

140, 2, 229–253. doi: 10.1006/inco.1997.2688.

[16] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi. 1999. Rewriting of regular

expressions and regular path queries. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, 194–204. doi: 10.1145/303976.303996.

[17] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and David G Andersen. 2011. Splitscreen:

enabling efficient, distributed malware detection. Journal of Communications and Networks, 13, 2, (Apr. 2011),
187–200. doi: 10.1109/jcn.2011.6157418.

[18] Chee-Yong Chan, Minos Garofalakis, and Rajeev Rastogi. 2003. Re-tree: an efficient index structure for regular

expressions. The VLDB Journal, 12, 2, 102–119. doi: 10.1007/s00778-003-0094-0.
[19] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel Fisher, John C Platt, James F

Terwilliger, and John Wernsing. 2014. Trill: a high-performance incremental query processor for diverse analytics.

Proceedings of the VLDB Endowment, 8, 4, 401–412. doi: 10.14778/2735496.2735503.
[20] Junghoo Cho and Sridhar Rajagopalan. 2002. A fast regular expression indexing engine. In Proceedings 18th

International Conference on Data Engineering. IEEE, 419–430. doi: 10.1109/ICDE.2002.994755.
[21] Byron Choi. 2002. What are real dtds like? In International Workshop on the Web and Databases.
[22] [SW] Cisco, Snort - Network Intrusion Detection and Prevention System. url: https://www.snort.org/snort3, vcs:

https://github.com/snort3/snort3.

[23] Russ Cox. 2012. Regular expression matching with a trigram index or how google code search worked. (2012).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

https://doi.org/10.1145/360825.360855
https://doi.org/10.1109/nwesp.2011.6088148
https://doi.org/10.1109/noms.2012.6211894
https://doi.org/10.1016/j.comcom.2014.12.011
https://doi.org/10.1145/968280.968312
https://doi.org/10.1145/1872007.1872032
https://doi.org/10.1109/infcom.2007.128
https://doi.org/10.1145/2445572.2445576
https://doi.org/10.1145/1323548.1323573
https://doi.org/10.1145/1882486.1882495
https://www.gnu.org/software/findutils/manual/html_node/find_html/posix_002dbasic-regular-expression-syntax.html
https://www.gnu.org/software/findutils/manual/html_node/find_html/posix_002dbasic-regular-expression-syntax.html
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/253260.253345
https://doi.org/10.1109/isca.2006.7
https://doi.org/10.1006/inco.1997.2688
https://doi.org/10.1145/303976.303996
https://doi.org/10.1109/jcn.2011.6157418
https://doi.org/10.1007/s00778-003-0094-0
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.1109/ICDE.2002.994755
https://www.snort.org/snort3
https://github.com/snort3/snort3

Exploiting Structure in Regular ExpressionQueries 152:25

[24] Yanlei Diao, Mehmet Altinel, Michael J Franklin, Hao Zhang, and Peter Fischer. 2003. Path sharing and predicate

evaluation for high-performance xml filtering. ACM Transactions on Database Systems (TODS), 28, 4, 467–516. doi:
10.1145/958942.958947.

[25] Yanlei Diao, Peter Fischer, Michael J Franklin, and Raymond To. 2002. Yfilter: efficient and scalable filtering of xml

documents. In Proceedings 18th International Conference on Data Engineering. IEEE, 341–342. doi: 10.1109/icde.2002
.994748.

[26] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. 2012. Adding regular expressions to graph

reachability and pattern queries. Frontiers of Computer Science, 6, 3, (June 2012), 313–338. doi: 10.1007/s11704-012-1
312-y.

[27] Daniela Florescu, Alon Levy, and Dan Suciu. 1998. Query containment for conjunctive queries with regular

expressions. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, 139–148. doi: 10.1145/275487.275503.

[28] Dominik D Freydenberger, Benny Kimelfeld, and Liat Peterfreund. 2018. Joining extractions of regular expressions.

In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 137–149. doi:
10.1145/3196959.3196967.

[29] Alain Frisch and Luca Cardelli. 2004. Greedy regular expression matching. In International Colloquium on Automata,
Languages, and Programming. Springer, 618–629. doi: 10.1007/978-3-540-27836-8_53.

[30] Daniel Gibney and Sharma V Thankachan. 2021. Text indexing for regular expression matching. Algorithms, 14, 5,
(Apr. 2021), 133. doi: 10.3390/a14050133.

[31] Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris D’Antoni, and Thomas F Wenisch. 2016. Hare: hardware

accelerator for regular expressions. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE. (Oct. 2016), 1–12. doi: 10.1109/micro.2016.7783747.

[32] [SW] Google, Google-RE2 version release 2022-06-01. url: https://github.com/google/re2, vcs: https://github.com

/google/re2.

[33] Todd J Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. 2003. Processing xml streams with deterministic

automata. In International Conference on Database Theory. Springer, 173–189. doi: 10.1145/1042046.1042051.
[34] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel. 2021. Finding data compatibility bugs with

json subschema checking. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 620–632. doi: 10.1145/3460319.3464796.

[35] [SW] Md. Jahidul Hamid, JPCRE2 version 10.32.01. url: https://docs.neuzunix.com/jpcre2/, vcs: https://github.com

/jpcre2/jpcre2.

[36] Laurie Hammel and Jignesh M Patel. 2002. Searching on the secondary structure of protein sequences. In VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases. Elsevier, 634–645. doi: 10.1016/b978-15586
0869-6/50062-7.

[37] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and Abdullah Mueen. 2016. Logmine: fast

pattern recognition for log analytics. In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, 1573–1582. doi: 10.1145/2983323.2983358.

[38] Philip Hazel. 2019. Technical notes about pcre2. (July 2019). Retrieved October 11, 2022 from https://github.com

/PCRE/pcre2/blob/6c941e3f778970b3012093da7bf888c875dd1739/HACKING%5C#L454.

[39] Kun Huang, Linxuan Ding, Gaogang Xie, Dafang Zhang, Alex X Liu, and Kave Salamatian. 2013. Scalable tcam-based

regular expression matching with compressed finite automata. In Architectures for Networking and Communications
Systems. IEEE, 83–93. doi: 10.1109/ancs.2013.6665178.

[40] Ela Hunt, Malcolm P Atkinson, and Robert W Irving. 2002. Database indexing for large dna and protein sequence

collections. The VLDB Journal, 11, 3, 256–271. doi: 10.1007/s007780200064.
[41] Joel Hypolite, John Sonchack, Shlomo Hershkop, Nathan Dautenhahn, André DeHon, and Jonathan M Smith. 2020.

Deepmatch: practical deep packet inspection in the data plane using network processors. In Proceedings of the 16th
International Conference on emerging Networking EXperiments and Technologies, 336–350. doi: 10.1145/3386367.3431
290.

[42] 2018. Ieee standard for information technology–portable operating system interface (posix(tm)) base specifications,

issue 7. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008), 1–3951. doi: 10.1109/IEEESTD.2018.8277153.
[43] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin Kim, Sungryoul Lee, Yung Yi, and

KyoungSoo Park. 2012. Kargus: a highly-scalable software-based intrusion detection system. In Proceedings of the 2012
ACM conference on Computer and communications security. ACM, (Oct. 2012), 317–328. doi: 10.1145/2382196.2382232.

[44] Ramakrishnan Kandhan, Nikhil Teletia, and Jignesh M Patel. 2010. Sigmatch: fast and scalable multi-pattern

matching. Proceedings of the VLDB Endowment, 3, 1-2, 1173–1184. doi: 10.14778/1920841.1920987.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

https://doi.org/10.1145/958942.958947
https://doi.org/10.1109/icde.2002.994748
https://doi.org/10.1109/icde.2002.994748
https://doi.org/10.1007/s11704-012-1312-y
https://doi.org/10.1007/s11704-012-1312-y
https://doi.org/10.1145/275487.275503
https://doi.org/10.1145/3196959.3196967
https://doi.org/10.1007/978-3-540-27836-8_53
https://doi.org/10.3390/a14050133
https://doi.org/10.1109/micro.2016.7783747
https://github.com/google/re2
https://github.com/google/re2
https://github.com/google/re2
https://doi.org/10.1145/1042046.1042051
https://doi.org/10.1145/3460319.3464796
https://docs.neuzunix.com/jpcre2/
https://github.com/jpcre2/jpcre2
https://github.com/jpcre2/jpcre2
https://doi.org/10.1016/b978-155860869-6/50062-7
https://doi.org/10.1016/b978-155860869-6/50062-7
https://doi.org/10.1145/2983323.2983358
https://github.com/PCRE/pcre2/blob/6c941e3f778970b3012093da7bf888c875dd1739/HACKING%5C#L454
https://github.com/PCRE/pcre2/blob/6c941e3f778970b3012093da7bf888c875dd1739/HACKING%5C#L454
https://doi.org/10.1109/ancs.2013.6665178
https://doi.org/10.1007/s007780200064
https://doi.org/10.1145/3386367.3431290
https://doi.org/10.1145/3386367.3431290
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1145/2382196.2382232
https://doi.org/10.14778/1920841.1920987

152:26 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

[45] Seongyoung Kang, Jiyoung An, Jinpyo Kim, and Sang-Woo Jun. 2021. Mithrilog: near-storage accelerator for

high-performance log analytics. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
434–448. doi: 10.1145/3466752.3480108.

[46] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. 1977. Fast pattern matching in strings. SIAM Journal on
Computing, 6, 2, 323–350. eprint: https://doi.org/10.1137/0206024. doi: 10.1137/0206024.

[47] Christoph Koch, Stefanie Scherzinger, and Michael Schmidt. 2008. Xml prefiltering as a string matching problem. In

2008 IEEE 24th International Conference on Data Engineering. IEEE. (Apr. 2008), 626–635. doi: 10.1109/icde.2008.4497
471.

[48] Shijin Kong, Randy Smith, and Cristian Estan. 2008. Efficient signature matching with multiple alphabet compression

tables. In Proceedings of the 4th international conference on Security and privacy in communication netowrks, 1–10.
doi: 10.1145/1460877.1460879.

[49] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, and George Varghese. 2007. Curing regular

expressions matching algorithms from insomnia, amnesia, and acalculia. In Proceedings of the 3rd ACM/IEEE
Symposium on Architecture for Networking and Communications Systems, 155–164. doi: 10.1145/1323548.1323574.

[50] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan Turner. 2006. Algorithms to accel-

erate multiple regular expressions matching for deep packet inspection. ACM SIGCOMM computer communication
review, 36, 4, 339–350. doi: 10.1145/1159913.1159952.

[51] Quanzhong Li, Bongki Moon, et al. 2001. Indexing and querying xml data for regular path expressions. In VLDB.
Vol. 1, 361–370.

[52] Zeyu Li, Hongzhi Wang, Wei Shao, Jianzhong Li, and Hong Gao. 2016. Repairing data through regular expressions.

Proceedings of the VLDB Endowment, 9, 5, 432–443. doi: 10.14778/2876473.2876478.
[53] Alex X Liu and Eric Torng. 2014. An overlay automata approach to regular expression matching. In IEEE INFOCOM

2014-IEEE Conference on Computer Communications. IEEE, 952–960. doi: 10.1109/INFOCOM.2014.6848024.

[54] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen, and Chia-Nan Kao. 2004. A fast string-matching algorithm for

network processor-based intrusion detection system. ACM Transactions on Embedded Computing Systems (TECS), 3,
3, 614–633. doi: 10.1145/1015047.1015055.

[55] Tingwen Liu, Alex X Liu, Jinqiao Shi, Yong Sun, and Li Guo. 2014. Towards fast and optimal grouping of regular

expressions via dfa size estimation. IEEE Journal on Selected Areas in Communications, 32, 10, 1797–1809. doi:
10.1109/JSAC.2014.2358839.

[56] Katja Losemann. 2012. Foundations of regular expressions in xml schema languages and sparql. In Proceedings of
the on SIGMOD/PODS 2012 PhD Symposium, 39–44. doi: 10.1145/2213598.2213609.

[57] Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu. 2019. Speedup your analytics: automatic

parameter tuning for databases and big data systems. Proceedings of the VLDB Endowment. doi: 10.14778/3352063.33
52112.

[58] 2020. Luceneplusplus build instructions. (Aug. 2020). Retrieved January 08, 2023 from https://github.com/luceneplu

splus/LucenePlusPlus/blob/9eb5e63e336546bc927e622fdda49919c4143e8e/doc/BUILDING.md.

[59] Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi Shvadron, and Kubilay Atasu. 2012.

Designing a programmable wire-speed regular-expression matching accelerator. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE Computer Society, Vancouver,

B.C., CANADA, 461–472. isbn: 9780769549248. doi: 10.1109/MICRO.2012.49.

[60] Wim Martens. 2022. Towards theory for real-world data. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, 261–276. doi: 10.1145/3517804.3526066.

[61] Wim Martens, Frank Neven, and Thomas Schwentick. 2007. Simple off the shelf abstractions for xml schema. ACM
SIGMOD Record, 36, 3, 15–22. doi: 10.1145/1324185.1324188.

[62] Wim Martens and Tina Trautner. 2019. Bridging theory and practice with query log analysis. ACM SIGMOD Record,
48, 1, 6–13. doi: 10.1145/3371316.3371319.

[63] Wim Martens and Tina Trautner. 2018. Evaluation and enumeration problems for regular path queries. In 21st
International Conference on Database Theory (ICDT 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:

10.4230/LIPIcs.ICDT.2018.19.

[64] Colin Meek, Jignesh M. Patel, and Shruti Kasetty. 2003. OASIS: an online and accurate technique for local-alignment

searches on biological sequences. In Proceedings 2003 VLDB Conference. Morgan Kaufmann, 910–921. isbn: 978-0-12-

722442-8. doi: 10.1016/B978-012722442-8/50085-9.

[65] Microsoft. 2022. Reference materials for kusto query language - re2 syntax. (Nov. 2022). Retrieved October 11, 2022

from https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/re2.

[66] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. 2007. Compiling pcre to fpga for accelerating snort ids. In

Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and Communications Systems. ACM,

(Dec. 2007), 127–136. doi: 10.1145/1323548.1323571.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

https://doi.org/10.1145/3466752.3480108
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1109/icde.2008.4497471
https://doi.org/10.1109/icde.2008.4497471
https://doi.org/10.1145/1460877.1460879
https://doi.org/10.1145/1323548.1323574
https://doi.org/10.1145/1159913.1159952
https://doi.org/10.14778/2876473.2876478
https://doi.org/10.1109/INFOCOM.2014.6848024
https://doi.org/10.1145/1015047.1015055
https://doi.org/10.1109/JSAC.2014.2358839
https://doi.org/10.1145/2213598.2213609
https://doi.org/10.14778/3352063.3352112
https://doi.org/10.14778/3352063.3352112
https://github.com/luceneplusplus/LucenePlusPlus/blob/9eb5e63e336546bc927e622fdda49919c4143e8e/doc/BUILDING.md
https://github.com/luceneplusplus/LucenePlusPlus/blob/9eb5e63e336546bc927e622fdda49919c4143e8e/doc/BUILDING.md
https://doi.org/10.1109/MICRO.2012.49
https://doi.org/10.1145/3517804.3526066
https://doi.org/10.1145/1324185.1324188
https://doi.org/10.1145/3371316.3371319
https://doi.org/10.4230/LIPIcs.ICDT.2018.19
https://doi.org/10.1016/B978-012722442-8/50085-9
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/re2
https://doi.org/10.1145/1323548.1323571

Exploiting Structure in Regular ExpressionQueries 152:27

[67] Kento Miura, Toshiyuki Amagasa, Hiroyuki Kitagawa, R Bordawekar, and T Lahiri. 2019. Accelerating regular path

queries using fpga. In ADMS@ VLDB, 47–54.
[68] Sobhan Moosavi, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, Radu Teodorescu, and Rajiv Ramnath.

2019. Accident risk prediction based on heterogeneous sparse data: new dataset and insights. In Proceedings of the
27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19).

Association for Computing Machinery, Chicago, IL, USA, 33–42. isbn: 9781450369091. doi: 10.1145/3347146.3359078.

[69] Maleeha Najam, Usman Younis, and Raihan Ur Rasool. 2014. Multi-byte pattern matching using stride-k dfa for high

speed deep packet inspection. In 2014 IEEE 17th International Conference on Computational Science and Engineering.
IEEE, 547–553. doi: 10.1109/CSE.2014.125.

[70] Pierre Nicodeme. 2003. Regexpcount, a symbolic package for counting problems on regular expressions and words.

Fundamenta Informaticae, 56, 1-2, 71–88.
[71] [SW] Open Information Security Foundation, Suricata. url: https://suricata.io/, vcs: https://github.com/OISF/suric

ata.

[72] Oracle. [n. d.] Mysql 8.0 reference manual: 12.8.2 regular expressions. Retrieved January 08, 2023 from https://dev

.mysql.com/doc/refman/8.0/en/regexp.html.

[73] Daniele Parravicini, Davide Conficconi, Emanuele Del Sozzo, Christian Pilato, and Marco D Santambrogio. 2021.

Cicero: a domain-specific architecture for efficient regular expression matching. ACM Transactions on Embedded
Computing Systems (TECS), 20, 5s, 1–24. doi: 10.1145/3476982.

[74] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka, Krishna Pai, Wei He, and Biswapesh

Chattopadhyay. 2022. Velox: meta’s unified execution engine. Proceedings of the VLDB Endowment, 15, 12, 3372–3384.
doi: 10.14778/3554821.3554829.

[75] El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Vanterpool, Vijay Gadepally, and Michael

Stonebraker. 2021. Dice: data discovery by example. Proceedings of the VLDB Endowment, 14, 12, 2819–2822. doi:
10.14778/3476311.3476353.

[76] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. 2018. A tutorial on thompson

sampling. Foundations and Trends® in Machine Learning, 11, 1, 1–96. doi: 10.1561/2200000070.
[77] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers search for code: a case study. In

Proceedings of the 2015 10th joint meeting on foundations of software engineering, 191–201. doi: 10.1145/2786805.2786
855.

[78] Boris Schäling. 2014. The boost c++ libraries, chapter 8. boost.regex. (Sept. 2014). Retrieved January 08, 2023 from

https://theboostcpplibraries.com/boost.regex.

[79] Tarique Siddiqui, Paul Luh, Zesheng Wang, Karrie Karahalios, and Aditya G Parameswaran. 2021. From sketching

to natural language: expressive visual querying for accelerating insight. ACM SIGMOD Record, 50, 1, 51–58. doi:
10.1145/3471485.3471498.

[80] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Accelerating pattern matching queries in

hybrid cpu-fpga architectures. In Proceedings of the 2017 ACM International Conference on Management of Data,
403–415. doi: 10.1145/3035918.3035954.

[81] Evangelia Sitaridi, Orestis Polychroniou, and Kenneth A Ross. 2016. Simd-accelerated regular expression matching.

In Proceedings of the 12th International Workshop on Data Management on New Hardware, 1–7. doi: 10.1145/2933349
.2933357.

[82] Sandeep Tata and Jignesh M Patel. 2003. Piqa: an algebra for querying protein data sets. In 15th International
Conference on Scientific and Statistical Database Management, 2003. IEEE, 141–150. doi: 10.1109/SSDM.2003.1214975.

[83] Sandeep Tata, Jignesh M. Patel, James S Friedman, and Anand Swaroop. 2006. Declarative querying for biological

sequences. In 22nd International Conference on Data Engineering (ICDE’06). IEEE, 87–87. doi: 10.1109/ICDE.2006.47.
[84] The Apache Software Foundation. 2022. Apache lucene 9.4.2 documentation. (Nov. 2022). Retrieved January 17,

2023 from https://lucene.apache.org/core/9_4_2/index.html.

[85] Dominic Tsang and Sanjay Chawla. 2011. A robust index for regular expression queries. In Proceedings of the 20th
ACM international conference on Information and knowledge management, 2365–2368. doi: 10.1145/2063576.2063968.

[86] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese. 2004. Deterministic memory-efficient string

matching algorithms for intrusion detection. In IEEE INFOCOM 2004. Vol. 4. IEEE, 2628–2639. doi: 10.1109/INFCOM.2

004.1354682.

[87] Jan Van Lunteren. 2006. High-performance pattern-matching for intrusion detection. In Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Computer Communications. Citeseer, 1–13. doi: 10.1109/INFOCOM.200

6.204.

[88] Stijn Vansummeren. 2003. Unique pattern matching in strings. arXiv preprint cs/0302004.
[89] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. 2011. Midea: a multi-parallel intrusion detection

architecture. In Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS ’11).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

https://doi.org/10.1145/3347146.3359078
https://doi.org/10.1109/CSE.2014.125
https://suricata.io/
https://github.com/OISF/suricata
https://github.com/OISF/suricata
https://dev.mysql.com/doc/refman/8.0/en/regexp.html
https://dev.mysql.com/doc/refman/8.0/en/regexp.html
https://doi.org/10.1145/3476982
https://doi.org/10.14778/3554821.3554829
https://doi.org/10.14778/3476311.3476353
https://doi.org/10.1561/2200000070
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://theboostcpplibraries.com/boost.regex
https://doi.org/10.1145/3471485.3471498
https://doi.org/10.1145/3035918.3035954
https://doi.org/10.1145/2933349.2933357
https://doi.org/10.1145/2933349.2933357
https://doi.org/10.1109/SSDM.2003.1214975
https://doi.org/10.1109/ICDE.2006.47
https://lucene.apache.org/core/9_4_2/index.html
https://doi.org/10.1145/2063576.2063968
https://doi.org/10.1109/INFCOM.2004.1354682
https://doi.org/10.1109/INFCOM.2004.1354682
https://doi.org/10.1109/INFOCOM.2006.204
https://doi.org/10.1109/INFOCOM.2006.204

152:28 Ling Zhang, Shaleen Deep, Avrilia Floratou, Anja Gruenheid, Jignesh M. Patel, and Yiwen Zhu

Association for Computing Machinery, Chicago, Illinois, USA, 297–308. isbn: 9781450309486. doi: 10.1145/2046707

.2046741.

[90] Kai Wang, Yaxuan Qi, Yibo Xue, and Jun Li. 2011. Reorganized and compact dfa for efficient regular expression

matching. In 2011 IEEE International Conference on Communications (ICC). IEEE, 1–5. doi: 10.1109/icc.2011.5963291.
[91] Shicheng Wang, Menghao Zhang, Guanyu Li, Chang Liu, Zhiliang Wang, Ying Liu, and Mingwei Xu. 2022. Scalable

and cost-efficient multistring pattern matching with programmable switches. IEEE/ACM Transactions on Networking.
doi: 10.1109/TNET.2022.3202523.

[92] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu, and Heqing Zhu. 2019.

Hyperscan: a fast multi-pattern regex matcher for modern CPUs. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 631–648. isbn: 978-1-931971-49-2. https:

//www.usenix.org/conference/nsdi19/presentation/wang-xiang.

[93] Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Rec., 41, 1, (Apr. 2012), 50–60. doi: 10.1145/220
6869.2206879.

[94] Chengcheng Xu, Shuhui Chen, Jinshu Su, Siu-Ming Yiu, and Lucas CK Hui. 2016. A survey on regular expression

matching for deep packet inspection: applications, algorithms, and hardware platforms. IEEE Communications
Surveys & Tutorials, 18, 4, 2991–3029. doi: 10.1109/COMST.2016.2566669.

[95] Yang Xu, Junchen Jiang, Rihua Wei, Yang Song, and H Jonathan Chao. 2014. Tfa: a tunable finite automaton for

pattern matching in network intrusion detection systems. IEEE Journal on Selected Areas in Communications, 32, 10,
1810–1821. doi: 10.1109/JSAC.2014.2358856.

[96] Xifeng Yan, Philip S Yu, and Jiawei Han. 2004. Graph indexing: a frequent structure-based approach. In Proceedings
of the 2004 ACM SIGMOD international conference on Management of data, 335–346. doi: 10.1145/1007568.1007607.

[97] Jiajia Yang, Lei Jiang, Qiu Tang, Qiong Dai, and Jianlong Tan. 2016. Pidfa: a practical multi-stride regular expression

matching engine based on fpga. In 2016 IEEE International Conference on Communications (ICC). IEEE, 1–7. doi:
10.1109/ICC.2016.7511199.

[98] Fang Yu, Zhifeng Chen, Yanlei Diao, Tamil V Lakshman, and Randy H Katz. 2006. Fast and memory-efficient regular

expression matching for deep packet inspection. In Proceedings of the 2006 ACM/IEEE symposium on Architecture for
networking and communications systems, 93–102. doi: 10.1145/1185347.1185360.

[99] Cha Zhang and Yunqian Ma. 2012. Ensemble Machine Learning: Methods and Applications. Springer Publishing
Company, Incorporated. isbn: 1441993258.

[100] Zhenjie Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, and Divesh Srivastava. 2010. Bed-tree: an all-purpose index

structure for string similarity search based on edit distance. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, 915–926. doi: 10.1145/1807167.1807266.

[101] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar, and Justine Sherry. 2020. Achieving 100gbps

intrusion prevention on a single server. In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 1083–1100.

[102] Li Zhou. 2015. A survey on contextual multi-armed bandits. arXiv preprint arXiv:1508.03326.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 152. Publication date: June 2023.

https://doi.org/10.1145/2046707.2046741
https://doi.org/10.1145/2046707.2046741
https://doi.org/10.1109/icc.2011.5963291
https://doi.org/10.1109/TNET.2022.3202523
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1109/COMST.2016.2566669
https://doi.org/10.1109/JSAC.2014.2358856
https://doi.org/10.1145/1007568.1007607
https://doi.org/10.1109/ICC.2016.7511199
https://doi.org/10.1145/1185347.1185360
https://doi.org/10.1145/1807167.1807266

	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Background
	2.1 Evaluation Techniques
	2.2 Known Optimizations in Existing Systems
	2.3 Input Properties for Log Analysis

	3 Framework and techniques
	3.1 Regex splitting
	3.2 Split-Matcher
	3.3 Learner

	4 Design Considerations
	4.1 Extensibility and Simplicity
	4.2 Minimize Learning Overhead
	4.3 Prefix and Suffix Sizes

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance of BLARE
	5.3 Multi-Armed Bandit Overhead
	5.4 Comparing 3-way and Multi-way Split
	5.5 Discussion

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments

